Объёмная плотность энергии поля. Электростатика: элементы учебной физики. Заряд, пройденный через катушку индуктивности, равен

Согласно азам физики, известно о наличии магнитного поля вокруг проводника или катушки с током. Данное поле в полной мере зависит от проводника, среды распространения поля и силы тока. Аналогично электрическому полю, магнитное поле является неким носителем энергии. Поскольку основным критерием, влияющим на энергию поля, является сила протекающего тока, то работа тока по созданию магнитного поля будет совпадать с энергией магнитного поля.

Энергия магнитного поля

Природу такого явления, как энергия магнитного поля, проще осознать, рассмотрев процессы, проходящие в цепи.

Элементы схемы:

  1. L – катушка индуктивности;
  2. Л – лампочка;
  3. ε – источник постоянного тока;
  4. К – ключ для замыкания и размыкания цепи.

При замкнутом ключе, согласно картинке (а), ток протекает от плюсовой клеммы источника тока по параллельным веткам через катушку индуктивности и лампочку. По катушке индуктивности протекает ток I0, а через лампочку протекает ток I1. В первый момент времени лампочка будет гореть более ярко, ввиду большого сопротивления катушки индуктивности. По мере уменьшения сопротивления катушки индуктивности и увеличения тока I0 лампочка будет гореть более тускло. Это объясняется тем, что в первый момент времени поступивший на катушку ток пропорционален току большой частоты, исходя из формулы индуктивного сопротивления катушки:

XL=2πfL, где:

  • XL – индуктивное сопротивление катушки;
  • f – частота тока;
  • L – индуктивность катушки.

Индуктивное сопротивление катушки возрастает многократно. Катушка индуктивности в этот момент времени ведет себя как разрыв цепи. Со временем индуктивное сопротивление снижается до нуля. Поскольку активное сопротивление катушки индуктивности ничтожно мало, а сопротивление нихромовой нити лампочки велико, то практически весь ток цепи протекает через катушку.

После размыкания цепи ключом К, согласно картинке (б), лампочка не тухнет, а, наоборот, загорается более ярким светом и постепенно гаснет. Для осуществления горения лампочки необходима энергия. Энергия эта берется из магнитного поля катушки индуктивности и называется энергией магнитного поля. Благодаря этому катушка индуктивности выступает как источник энергии (самоиндукции), согласно картинке (в).

Определить активность магнитного поля возможно, рассмотрев электрическую схему.

Для расчета энергии магнитного поля есть необходимость в создании такой схемы, в которой энергия источника питания расходовалась бы непосредственно на образование магнитного поля. Соответственно, в схеме выше значениями внутреннего сопротивления источника питания и катушки индуктивности нужно пренебречь.

Обратите внимание! Из второго закона Кирхгофа следует, что сумма напряжений, подключенных к цепи, равна сумме падений напряжений на каждом из элементов цепи.

Общее напряжение цепи равно:

ε+εі=Ir+IR, где:

  • ε – электродвижущая сила (напряжение) источника питания;
  • εi – электродвижущая сила (напряжение) индукции;
  • I – сила тока цепи;
  • r – внутреннее сопротивление источника питания;
  • R – внутреннее сопротивление катушки индуктивности.

Поскольку рассмотренная цепь идеальная, и внутренние сопротивления равны нулю, то формула преобразовывается в такую:

Электродвижущая сила самоиндукции зависит от индуктивности катушки и скорости изменения тока в цепи, а именно:

подставив значение в общую формулу, получается:

  • ε-LΔI/Δt=0,
  • ε= LΔI/Δt,
  • ΔI= ε Δt /L.

Исходя из данной закономерности, с течением времени сила тока равняется:

Заряд, пройденный через катушку индуктивности, равен:

Объединив обе формулы, получаем:

Работа источника тока по переносу заряда по катушке индуктивности равняется:

A= εq=εLI2/2ε=LI2/2.

Поскольку рассматриваемая цепь является идеальной, а именно отсутствует какое-либо сопротивление, то затраченная работа источника тока пошла на формирование магнитного поля и соответствует энергии магнитного поля:

С целью исключения зависимости активности магнитного поля от характеристики катушки, необходимо преобразовать выражение через характеристику поля, а именно через вектор магнитной индукции:

  1. B=µ0µIn, где:
  • B – вектор магнитной индукции соленоида;
  • µ0 – магнитная постоянная (µ0=4π×10-7 Гн/м)
  • µ – магнитная проницаемость вещества;
  • I – сила тока в цепи соленоида;
  • n – плотность намотки, (n=N/l, где N – число витков, l – отрезок длины соленоида).
  1. L=µ0µn2V, где:

V – объем катушки (или объем магнитного поля, сосредоточенного в катушке) (V=Sl, S – площадь поперечного сечения соленоида, l – длина соленоида).

Если воспользоваться формулами (1 и 2), выражение, определяющее энергию магнитного поля, выглядит как:

Wмаг=B2V/2µ0µ.

Рассмотренная формула справедлива при условии, что фон однотипный. Если поле неоднородное, то необходимо рассматривать параметр, характеризующий концентрацию активности в этой зоне. Эта величина именуется как объемная плотность энергии магнитного поля.

Объемная плотность магнитной энергии

Она определяется по выражению:

ωмаг=Wмаг/V, где:

  • ωмаг – объемная плотность энергии магнитного поля;
  • V – объем некой зоны, где создано магнитное поле.

Единицей измерения объемной плотности энергии магнитного поля является отношение – Дж/м3.

Подставив в искомое выражение значение энергии поля W маг, получаем окончательную формулировку, определяющую объемную плотность:

ωмаг= B2/2µ0µ.

Изложенная информация подробно раскрывает порядок нахождения такого параметра поля, как энергия магнитного поля. Поскольку указанная величина применима для однородного поля, то для проведения вычислений в неоднородном магнитном поле используется величина, определяющая концентрацию или плотность энергии поля.

Видео

Электрическую энергию плоского конденсатора можно выразить через напряженность поля между его обкладками:

где
- объем пространства, занятого полем, S – площадь обкладок, d – расстояние между ними. Оказывается, через напряженность можно выразить электрическую энергию и произвольной системы заряженных проводников и диэлектриков:

, (5)

,

а интегрирование проводится по всему пространству, занятому полем (предполагается, что диэлектрик изотропный и
). Величинаw представляет собой электрическую энергию, приходящуюся на единицу объема. Вид формулы (5) дает основания предположить, что электрическая энергия заключена не во взаимодействующих зарядах, а в их электрическом поле, заполняющем пространство. В рамках электростатики это предположение проверить экспериментально или обосновать теоретически невозможно, однако рассмотрение переменных электрических и магнитных полей позволяет удостоверится в правильности такой полевой интерпретации формулы (5).

7. Энергия электрического поля (Примеры решения задач) Энергия взаимодействия зарядов

Пример 1.

Определите электрическую энергию взаимодействия точечных зарядов, расположенных в вершинах квадрата со стороной a (см. рис.2).

Решение .

На рис.3 условно изображены двунаправленными стрелками все парные взаимодействия зарядов. Учитывая энергии всех этих взаимодействий, получим:

.

Пример 2.

Определите электрическую энергию взаимодействия заряженного кольца с диполем, расположенным на его оси, как показано на рис.4. Известны расстояния a , l , заряды Q , q и радиус кольца R .

Решение .

При решении задачи следует учесть все энергии парных взаимодействий зарядов одного тела (кольца) с зарядами другого тела (диполя). Энергия взаимодействия точечного заряда q с зарядомQ , распределенным по кольцу, определяется суммой

,

где
- заряд бесконечно малого фрагмента кольца, - расстояние от этого фрагмента до зарядаq . Поскольку всеодинаковы и равны
, то

Аналогично найдем энергию взаимодействия точечного заряда –q с заряженным кольцом:

Суммируя W 1 иW 2 , получим для энергии взаимодействия кольца с диполем:

.

Электрическая энергия заряженных проводников

Пример 3.

Определите работу электрических сил при уменьшении в 2 раза радиуса однородно заряженной сферы. Заряд сферы q , ее первоначальный радиус R .

Решение .

Электрическая энергия уединенного проводника определяется формулой
, гдеq – заряд проводника,- его потенциал. Учитывая, что потенциал однородно заряженной сферы радиусаR равен
, найдем ее электрическую энергию:

.

После уменьшения в два раза радиуса сферы ее энергия становится равной

.

Электрические силы при этом совершают работу

.

Пример 4.

Два металлических шара, радиусы которых r и 2r , а соответствующие заряды 2q и –q , расположены в вакууме на большом расстоянии друг от друга. Во сколько раз уменьшится электрическая энергия системы, если шары соединить тонкой проволокой?

Решение .

После соединения шаров тонкой проволокой их потенциалы становятся одинаковыми

,

а установившиеся заряды шаров Q 1 и Q 2 получаются в результате перетекания заряда с одного шара на другой. При этом суммарный заряд шаров остается постоянным:

.

Из этих уравнений найдем

,
.

Энергия шаров до соединения их проволокой равна

,

а после соединения

.

Подставляя в последнее выражение значения Q 1 и Q 2 , получим после простых преобразований

.

Пример 5.

В один шар слились N = 8 одинаковых шариков ртути, заряд каждого из которых q . Считая, что в начальном состоянии ртутные шарики находились на большом расстоянии друг от друга, определите, во сколько раз увеличилась электрическая энергия системы.

Решение .

При слиянии ртутных шариков сохраняется их суммарный заряд и объем:

,

где Q – заряд шара, R – его радиус, r – радиус каждого маленького ртутного шарика. Суммарная электрическая энергия N уединенных шариков равна

.

Электрическая энергия полученного в результате слияния шара

.

После алгебраических преобразований получим

= 4.

Пример 6.

Металлический шарик радиуса R = 1 мм и заряда q = 0,1 нКл с большого расстояния медленно приближают к незаряженному проводнику и останавливают, когда потенциал шарика становится равным  = 450 В. Какую работу для этого следует совершить?

Решение .

Электрическая энергия системы из двух заряженных проводников определяется формулой

,

где q 1 иq 2 – заряды проводников, 1 и 2 – их потенциалы. Так как проводник по условию задачи не заряжен, то

,

где q 1 и 1 заряд и потенциал шара. Когда шар и незаряженный проводник находятся на большом расстоянии друг от друга,

,

и электрическая энергия системы

.

В конечном состоянии системы, когда потенциал шара стал равным , электрическая энергия системы:

.

Работа внешних сил равна приращению электрической энергии:

= –0,0225 мкДж.

Заметим, что электрическое поле в конечном состоянии системы создается зарядами, индуцированными на проводнике, а также зарядами, неоднородно распределенными по поверхности металлического шара. Рассчитать это поле при известной геометрии проводника и заданном положении металлического шара весьма непросто. Нам не потребовалось этого делать, поскольку в задаче задана не геометрическая конфигурация системы, а потенциал шара в конечном состоянии.

Пример 7 .

Система состоит из двух концентрических тонких металлических оболочек с радиусами R 1 и R 2 (
и соответствующими зарядамиq 1 и q 2 . Найдите электрическую энергию W системы. Рассмотрите также специальный случай, когда
.

Решение .

Электрическая энергия системы из двух заряженных проводников определяется формулой

.

Для решения задачи необходимо найти потенциалы внутренней ( 1) и внешней ( 2) сфер. Это нетрудно сделать (см. соответствующий раздел пособия):

,
.

Подставляя эти выражения в формулу для энергии, получим

.

При
энергия равна

.

1. Энергия системы неподвижных точечных зарядов. Электростатические силы взаимодействия консервативны; следовательно, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов и , находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где и - соответственно потенциалы, создаваемые зарядом в точке нахождения заряда и зарядом в точке нахождения заряда . Согласно формуле (8.3.6),

Добавляя к системе из двух зарядов последовательно заряды , , …, можно убедиться в том, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна

где - потенциал, создаваемый в той точке, где находится заряд , всеми зарядами, кроме i-го.

2. Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны q, C, . Увеличим заряд этого проводника на dq. Для этого необходимо перенести заряд dq из бесконечности на уединенный проводник, затратив на это работу, равную

Чтобы зарядить тело от нулевого потенциала до , необходимо совершить работу

Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник:

Формулу (8.12.3.) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Полагая потенциал проводника равным , из (8.12.1.) найдем

где - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (8.12.3.) равна

где q - заряд конденсатора, C - его емкость, - разность потенциалов между обкладками.

4. Энергия электростатического поля. Преобразуем формулу (8.12.4.), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора и разности потенциалов между его обкладками (). Тогда получим



где V=Sd - объем конденсатора. Формула (8.12.5.) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е .

Формулы (8.12.4.) и (8.12.5.) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем - заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т.е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основное положение теории близкодействия о локализации энергии в поле и что носителем энергии является поле.

Объемная плотность энергии электростатического поля (энергия единицы объема)

Выражение (8.12.6.) справедливо только для изотропного диэлектрика, для которого выполняется соотношение: .

Электрическое поле - одна из двух компонент электромагнитного поля, представляющее собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика - напряжённость электрического поля - векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике - это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Основным действием электрического поля является силовое воздействие на неподвижные относительно наблюдателя электрически заряженные тела или частицы. На движущиеся заряды

силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Энергия электрического поля. Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где E - напряжённость электрического поля, D - индукция электрического поля.

Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Строго говоря, термин «энергия электромагнитного поля» является не вполне корректным. Вычисление полной энергии электрического поля даже одного электрона приводит к значению, равному бесконечности, поскольку соответствующий интеграл (см. ниже) расходится. Бесконечная энергия поля вполне конечного электрона составляет одну из теоретических проблем классической электродинамики. Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определённой точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.

Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей. В системе СИ.

Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна. Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем

С учетом, что

RC-цепь - электрическая цепь, состоящая из конденсатора и резистора. Она бывает дифференцирующей и интегрирующей. Вот такое соединение резистора и конденсатора называется дифференцирующей цепью или укорачивающей цепью .

При подаче на вход RC-цепи импульса напряжения конденсатора сразу же начнет заряжаться током, проходящим через него самого и резистор. Сначала ток будет максимальным, затем по мере увеличения заряда конденсатора постепенно уменьшится до нуля по экспоненте. Когда через резистор проходит ток, на нем образуется падение напряжения, которое определяется, как U=i R , где i-ток заряда конденсатора. Поскольку ток изменяется экспоненциально, то и напряжение будет изменяться также - экспоненциально от максимума до нуля. Падение напряжения на резисторе, как раз таки и является выходным. Его величину можно определить по формуле U вых = U 0 e -t/τ . Величина τ называется постоянной времени цепи и соответствует изменению выходного напряжения на 63% от исходного (e -1 = 0.37). Очевидно, что время изменения выходного напряжения зависит от сопротивления резистора и емкости конденсатора и, соответственно, постоянная времени цепи пропорциональна этим значениям, т. е. τ = RC . Если емкость в Фарадах, сопротивление в Омах, то τ в секундах.

Если поменять местами резистор и конденсатор, то получим интегрирующую цепь или удлиняющую цепь .

Выходным напряжением в интегрирующей цепи является напряжение на конденсаторе. Естественно, если конденсатор разряжен, оно равно нулю. При подаче импульса напряжения на вход цепи конденсатор начнет накапливать заряд, и накопление будет происходить по экспоненциальному закону, соответственно, и напряжение на нем будет нарастать по экспоненте от нуля до своего максимального значения. Его значение можно определить по формуле U вых = U 0 (1 - e -t/τ) . Постоянная времени цепи определяется по такой же формуле, как и для дифференцирующей цепи и имеет тот же смысл.

Для обеих цепей резистор ограничивает ток заряда конденсатора, поэтому чем больше его сопротивление, тем больше время заряда конденсатора. Также и для конденсатора, чем больше емкость, тем большее время он заряжается.

Электрический ток: виды

Постоянный ток

Постоянным током называется электрический ток, который не изменяется во времени по направлению. Источниками постоянного тока являются гальванические элементы, аккумуляторы и генераторы постоянного тока.

Переменный ток

Переменным называется электрический ток, величина и направление которого изменяются во времени. Область применения переменного тока намного шире, чем постоянного. Это объясняется тем, что напряжение переменного тока можно легко понижать или повышать с помощью трансформатора, практически в любых пределах. Переменный ток легче транспортировать на большие расстояния.