Энергия системы зарядов заряженного проводника. Энергия заряженного проводника и конденсатора. Объемная плотность энергии электрического поля. Взаимная энергия системы точечных зарядов

Энергия заряженного проводника определяется как работа по переносу заряда из на его поверхность. Если сразу переносить весь заряд из на поверхность проводника, то работа, совершаемая против силы электрического поля будет равна нулю, поскольку заряды переносятся в отсутствии электрического поля.

Поэтому энергию заряженного проводника следует определять как работу по переносу заряда из на его поверхность отдельными малыми порциями.

Энергия заряженного конденсатора. Энергию заряженного конденсатора можно найти так же через работу по переносу заряда на его пластины отдельными малыми порциями. Основное отличие от предыдущего случая состоит в том, что в данном случае заряды переносятся не из , а с одной пластины на другую, что требует во много раз меньших затрат энергии.Поскольку работа по зарядке проводника или конденсатора связана с потенциалом, то потребуются гораздо меньшие затраты энергии для сообщения одинакового заряда пластинам конденсатора и проводнику. Отсюда следует, что взаимная емкость пластин конденсатора много больше суммарной емкости каждой из пластин в отдельности.

ЭНЕРГИЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ. ПЛОТНОСТЬ ЭНЕРГИИ

Будем считать, что энергия заряженного конденсатора – это энергия электростатического поля, заключенного между его пластинами. Для определения энергия электростатического поля возьмем плоский конденсатор, поскольку поле между его пластинами является однородным. Выразим энергию заряженного конденсатора через основную характеристику электрического поля - напряженность поля

Работа по поляризации диэлектрика. Возьмем диэлектрик в виде куба, который состоит из неполярных молекул. Под действием поля напряженностью Е происходит смещение + и – зарядов в каждой молекуле на dr k .

Возникающий при этом электрический момент молекулы p k = q k ∙dr k .

Работа по поляризации одной молекулы: dA k =F k ∙ dr k = q k ∙E∙ dr k ,

но q k ∙dr k =dp k -это изменение электрического момента одной молекулы.

Откуда dA k =Е∙ dр k

Элементарная работа по всему объему диэлектрика:

dA V = Ʃ E∙dp i = E Ʃ dp i = E d Ʃp i = E∙ dP

Работа по поляризации диэлектрика

Энергия электрического поля, плотность энергии

Первое слагаемое – это энергия электрического поля

в вакууме, а второе – работа по поляризации диэлектрика

ЭЛЕКТРИЧЕСКИЙ ТОК

Лекция №14

Электрическим током называется направленное движение зарядов. За направление тока принимается направление движения + зарядов. Свойство тел пропускать электрический ток называется проводимостью . По этому признаку все тела можно условно разделить на проводники и изоляторы .

Линия тока – это линия, вдоль которой движутся заряды, участвующие в электрическом токе.

Трубка тока – трубка, боковые стенки которой образованы линиями тока.

Сила тока I – физическая величина, характеризующая скорость потока заряженных частиц, равная количеству электричества Δq, проходящему через поперечное сечение проводника за время Δt, отнесенному к этому интервалу времени: I= Dq/Dt

Плотность тока – векторная величина, связывающая силу тока с поперечным сечением проводника. Плотность тока равна количеству электричества Δq, проходящему через поперечное сечение проводника Δ S за время Δt, отнесенное к этой площадке и этому интервалу времени.

Рассмотрим заряженный уединённый проводник произвольной формы, помещённый в вакуум. Пусть заряд проводника равен q, а потенциал внешнего (исходного) электростатического поля равен . Потенциал бесконечно удалённой точки пространства принимаем равным нулю. Для точечного электрического заряда величины , находящегося в точке пространства, потенциал которой равен , произведение представляет собой работу, которую совершили бы силы электростатического поля по перемещению этого заряда из рассматриваемой точки в бесконечно удалённую точку пространства по произвольной траектории. Иначе, произведение можно интерпретировать как потенциальную энергию заряда в точке пространства, потенциал внешнего поля которой равен . В основе приведённого рассуждения лежит предположение о том, что в процессе перемещения сосредоточенного электрического заряда распределение потенциала внешнего электростатического поля остаётся неизменным. Это справедливо, поскольку внешнее по отношению к электрическому заряду электростатическое поле создаётся по условию сторонними неподвижными и не изменяющимися зарядами.

В случае разрядки уединённого проводника дело обстоит сложнее: суммарный заряд проводника создаёт вокруг себя электростатическое поле, изменение величины заряда на проводнике сказывается на распределении потенциала в пространстве. Благодаря этому работа сил электростатического поля по перемещению элементарного заряда с поверхности проводника в бесконечно удалённую точку зависит от величины остающегося на проводнике электрического заряда:

Таким образом, приращение потенциальной энергии заряда на уединённом проводнике можно описать уравнением

. (2)

Вспомним, что потенциал проводника связан с электрическим зарядом ёмкостью

(3)

Поскольку ёмкость определяется только формой проводника, её величину можно считать постоянной. Подставим соотношение (3) в уравнение (2):

Потенциальная энергия электрического заряда на уединённом проводнике оказывается равной

(5)

размерность потенциальной энергии – Дж. Можно подумать, что полученные соотношения содержат логическое противоречие: первое из выражений для W определено полностью, а второе и третье определены с точностью до произвольной постоянной. Это не так. Хотя для потенциальной энергии системы произвольное постоянное слагаемое не имеет существенного значения, заметим, что под величиной в этих соотношениях «скрывается» разность . Если об этом не забывать, недоразумений не возникает.

Выражение для потенциальной энергии заряда на уединённом проводнике можно преобразовать. Заметим, что величина заряда проводника определена соотношением

где - поверхностная плотность электрического заряда на поверхности проводника. Величина связана с величиной нормальной к поверхности компонентой вектора напряжённости электростатического поля около проводника:

(7)

Здесь - внешняя нормаль по отношению к проводнику. Поскольку на поверхности проводника потенциал сохраняет постоянное значение, а напряжённость электростатического поля можно выразить через градиент потенциала, то выражение для потенциальной энергии (5) можно переписать в виде:

. (8)

Теперь вспомним, что потенциал электростатического поля в вакууме вне проводника удовлетворяет уравнению Лапласа . Тогда в каждой точке пространства вне проводника справедливо уравнение:

Проинтегрируем это соотношение по объёму вне проводника и используем при этом математическую теорему Остроградского-Гаусса с учётом обращения в нуль вектора на бесконечно удалённой поверхности, в результате получим:

. (10)

В приведённом результате вектор является вектором внешней нормали по отношению к объёму вне проводника. Используя полученный результат в выражении (8) с учётом зависимости напряжённости поля от потенциала, получим окончательно:

. (11)

На первый взгляд, зависимость (11) получена в результате чисто математических преобразований. Но сам результат позволяет по-новому взглянуть на физический смысл соотношения (11): потенциальная энергия электрического заряда на уединённом проводнике конечных размеров выражается через параметры пространства вне проводника, через напряженность электростатического поля вне проводника. Возникает вопрос, взаимодействие электрических зарядов или составляющие электростатического поля обладают физической реальностью? В рамках электростатики на этот вопрос нет ответа. Обе интерпретации равноправны. Но в рамках электродинамики экспериментально показано, что электрическое поле является реально существующим.

Подынтегральная функция в соотношении (11) является объёмной плотностью энергии электрического поля. Её размерность – Дж/м 3 .

Зависимость (11) позволяет сформулировать новое определение электрической ёмкости уединённого проводника в вакууме:

Это выражение можно было бы написать и раньше, но смысл величины как интеграла от объёмной плотности энергии электрического поля, созданного проводником с потенциалом на его поверхности, вне проводника, был бы утерян, а без этого невозможно воспользоваться выражением (12) для конструктивного расчёта величины С .

1. Энергия системы неподвижных точеч­ных зарядов . Электростатические силы взаимодействия консервативны; следовательно, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух точечных зарядов Q 1 и Q 2 , находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где φ 12 и φ 21 - соответственно потенциа­лы, создаваемые зарядом Q 2 в точке на­хождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2 . Потенциал поля точечного заряда равен:

Добавляя к системе из двух зарядов по­следовательно заряды Q 3 , Q 4 , …, можно убедиться в том, что в случае nнепод­вижных зарядов энергия взаимодействия системы точечных зарядов равна

(3)

где j i - потенциал, создаваемый в той точке, где находится заряд Q i , всеми за­рядами, кроме i-го.

2. Энергия заряженного уединенного проводника . Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, φ . Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный провод­ник, затратив на это работу, равную

Чтобы зарядить тело от нулевого потенци­ала до j, необходимо совершить работу

Энергия заряженного проводника рав­на той работе, которую необходимо совершить, чтобы зарядить этот проводник:

(4)

Эту формулу можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной.Полагая потенциал проводника равным j, из (3) найдем

где - заряд проводника.

3. Энергия заряженного конденсато­ра . Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (4) равна

(5)

где Q - заряд конденсатора, С - его ем­кость, Dj - разность потенциалов между обкладками.

Используя выражение (5), можно найти механическую силу, с которой пластины конден­сатора притягивают друг друга. Для этого предположим, что расстояние х меж­ду пластинами меняется, например, на величину dx. Тогда действующая сила со­вершает работу

вследствие уменьшения потенциальной энергии системы

F dx = -dW,

(6)

Подставив в (5) в формулу емкости плоского конденсатора, по­лучим

(7)

Производядифференцирование при кон­кретном значении энергии (см. (6) и (7)), найдем искомую силу:

,

где знак минус указывает, что сила Fявляется силой притяжения.

4. Энергия электростатического поля .

Преобразуем формулу (5), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воcпользовавшись выражением для емкости плоского конденсатора (C = e 0 eS/d) и раз­ности потенциалов между его обкладками (Dj = Ed). Тогда получим

(8)

где V = Sd - объем конденсатора. Эта форму­ла показывает, что энергия кон­денсатора выражается через величину, характеризующую электростатическое по­ле,- напряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

Это выражение справедливо только для изотропного диэлектрика, для которого выполняется соотношение: Р = ce 0 E.

Формулы (5) и (8) соответствен­но связывают энергию конденсатора с за­рядом на его обкладках и с напряженно­стью поля. Возникает, естественно, вопрос о локализации электростатической энер­гии и что является ее носителем - заряды или иоле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. По­этому электростатика ответить на постав­ленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обо­собленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, спо­собных переносить энергию. Это убеди­тельно подтверждает основное положение теории близкодействия о локализации энергии в поле и что носителем энергии является поле.

Электрические диполи

Два равных по величине заряда противоположного знака, + Q и- Q, расположенных на расстоянии l друг от друга, образуют электрический диполь. Величина Ql называется дипольным моментом и обозначается символом р. Дипольным моментом обладают многие молекулы, напри­мер двухатомная молекула СО (атом С имеет небольшой положительный заряд, а О - небольшой отрицательный заряд); несмотря на то что молекула в целом нейтральна, в ней происходит разделение зарядов из-за неравного распределения электронов между двумя атомами. (Сим­метричные двухатомные молекулы, такие, как О 2 , не обладают дипольным моментом.)

Рассмотрим вначале диполь с моментом ρ = Ql, помещенный в однородное электрическое поле напряженностью Ε . Дипольный момент можно пред­ставить в виде вектора р, равного по абсолютной величи­не Ql и направленного от отрицательного заряда к поло­жительному. Если поле однородно, то силы, действующие на положительный заряд, QE, и отрицательный, - QE, не создают результирующей силы, действующей на диполь. Однако они приводят к возникновению вращающего мо­мента, величина которого относительно середины диполя О равна

или в векторной записи

В результате диполь стремится повернуться так, чтобы вектор p был параллелен Е. Работа W, совершаемая электрическим полем над диполем, когда угол θ изме­няется от q 1 до q 2 , дается выражением

В результате работы, совершаемой электрическим полем, уменьшается потенциальная энергия U диполя; если по­ложить U = 0, когда p^Ε (θ = 90 0), то

U=-W=- pEcos θ = - p · Ε.

Если электрическое поле неоднородно, то силы, действую­щие на положительный и отрицательный заряды диполя, могут оказаться неодинаковыми по величине, и тогда на диполь, кроме вращающего момента, будет действовать еще и результирующая сила.

Итак, мы видим, что происходит с электрическим диполем, помещенным во внешнее электрическое поле. Обратимся теперь к другой стороне дела.

рис. Электрическое по­ле, создаваемое электрическим диполем.

Предположим, что внешнее поле отсутствует, и определим электрическое поле, создаваемое самим диполем (способное действовать на другие заряды). Для простоты ограничимся точками, расположенными на перпендикуляре к середине диполя, подобно точке Ρ на рис. ???, находящейся на расстоя­нии rот середины диполя. (Заметим, что rна рис.??? не является расстоянием от каждого из зарядов до Р, кото­рое равно (r 2 + / 2 /4) 1/2) .Напряженность электрического поля в: точке Ρ равна

Ε = Ε + + Ε - ,

где Е + и Е - - напряженности поля, создаваемые соот­ветственно положительным и отрицательным зарядами, равные между собой по абсолютной величине:

Их y-компоненты в точке Ρ взаимно уничтожаются, и по абсолютной величине напряженность электрического поля Ε равна

,

[вдоль перпендикуляра к середине диполя].

Вдали от диполя (r » /) это выражение упрощается:

[вдоль перпендикуляра к середине диполя, при r >> l].

Видно, что напряженность электрического поля диполя убывает с расстоянием быстрее, чем для точечного заряда (как 1/r 3 вместо 1/r 2). Этого и следовало ожидать: на больших расстояниях два заряда противоположных знаков кажутся столь близкими, что нейтрализуют друг друга. Зависимость вида 1/r 3 справедлива и для точек, не лежащих на перпендикуляре к середине диполя.

11. Энергия заряженного проводника и конденсатора. Плотность энергии электростатического поля.

1. Энергия заряженного проводника и конденсатора.

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость - С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда

При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е.

Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q:

Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид:

2. Плотность энергии электростатического поля.

Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна . Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем:

С учетом, что и :

Или .

12. Носители тока в средах. Сила и плотность тока. Уравнение непрерывности. Электрическое поле в проводнике с током. Силовые линии электрического поля и линии тока.

Электрический ток - упорядоченное некомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках - электроны , в электролитах - ионы (катионы и анионы ), в газах - ионы и электроны , в вакууме при определенных условиях -электроны , в полупроводниках - электроны и дырки (электронно-дырочная проводимость).

Сила тока - скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока - основная единица в СИ 1 А - есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Η на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSΔl частиц, где n - концентрация частиц. Их общий заряд


Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Плотность тока j - это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1), . Направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Уравнение непрерывности.

Представим себе, в некоторой проводящей среде, где течет ток, замкнутую поверхность S . Для замкнутых поверхностей векторы нормалей, а следовательно, и векторы принято брать наружу, поэтому интеграл дает заряд, выходящий в единицу времени наружу из объема V , охваченного поверхностью S . Мы знаем, что плотность постоянного электрического тока одинакова по всему поперечному сечению S однородного проводника. Поэтому для постоянного тока в однородном проводнике с поперечным сечением S сила тока:

Пусть S – замкнутая поверхность, а векторы всюду проведены по внешним нормалям . Тогда поток вектора сквозь эту поверхность S равен электрическому току I , идущему вовне из области, ограниченный замкнутой поверхностью S . Следовательно, согласно закону сохранения электрического заряда, суммарный электрический заряд q , охватываемый поверхностью S , изменяется за время на , тогда в интегральной форме можно записать.

Заряд q , находящийся на некотором проводнике, можно рассматривать как систему точечных зарядов, а следовательно, энергия заряженного проводника может быть определена по формуле (5.3). Известно, что область, занятая проводником, является эквипотенциальной, поэтому . Вынесем в формуле (5.3) за знак суммы:

так как и определяет весь заряд, сосредоточенный на проводнике, выражение для энергии заряженного проводника получим в виде: .

Применяя соотношение , можно получить следующее выражение для потенциальной энергии заряженного проводника:

.

Энергия заряженного конденсатора

Пусть заряд находится на обкладке с потенциалом , а заряд на обкладке с потенциалом . Согласно формуле (5.3) энергию такой системы можно определить:

Воспользовавшись выражением (4.4) для электроемкости конденсатора, (5.4) можно представить в виде:

. (5.5)

Энергия электростатического поля

Энергию заряженного конденсатора можно выразить через величины, характеризующие поле между пластинами. Сделаем это для плоского конденсатора. Учитывая формулу для плоского конденсатора и что , (5.5) примет вид:

. (5.6)

Так как - объем, занимаемый полем, то формулу (5.6) можно записать в виде:

. (5.7)

Формула (5.5) связывает энергию конденсатора с зарядом на его обкладках, а формула (5.7) – с напряженностью поля. В рамках электростатики невозможно ответить на вопрос, что является носителем энергии – заряды или поле? Постоянные поля и создающие их заряды не могут существовать обособленно друг от друга. Законы электродинамики доказывают, что носителем энергии является поле.

Если поле однородно (например, в плоском конденсаторе), энергия в нем распределяется с постоянной плотностью, значение которой можно найти по формуле:

. (5.8)

С учетом взаимосвязи напряженности и индукции поля выражения для плотности энергии (5.8) можно записать следующим образом:

.

Принимая во внимание (3.7), получим:

. (5.9)

Первое слагаемое в (5.9) определяет плотность энергии в вакууме, а второе – плотность энергии, затрачиваемую на поляризацию диэлектрика.

ПОСТОЯННЫЙ ТОК

Сила тока, плотность тока

Под электрическим током понимают упорядоченное движение заряженных частиц, причем за направление тока принимают направление движения положительных зарядов.

Электрический ток существует при наличии свободных зарядов и электрического поля. Такие условия для движения зарядов можно создать в вакууме (термоэлектронная эмиссия) и в различных средах, таких как твердые тела (металлы, полупроводники), жидкости (жидкие металлы, электролиты) и в газах. Носителями тока могут быть различные частицы, так в металлах – свободные электроны, в газах – электроны и ионы и т.д.



Протекание тока по проводнику характеризует сила тока I , определяемая по формуле:

где dq – заряд, проходящий через поперечное сечение проводника за время dt .

Для постоянного тока величина I остается одинаковой и по модулю, и по направлению, что позволяет в формуле (6.1) выбирать конечные значения заряда и времени:

Распределение тока по сечению проводника характеризует вектор плотности , направление которого в каждой точке проводника совпадает с направлением тока, т.е. с направлением скорости упорядоченных положительных зарядов . Модуль вектора равен:

где - сила тока, протекающего в данной точке внутри проводника через элементарную площадку , расположенную перпендикулярно к направлению тока (рис.6.1,а).

Введение вектора плотности тока позволяет найти силу тока, протекающего через любую поверхность S :

. (6.2)

В этой формуле угол – это угол между вектором и нормалью к элементарной площадке площадью (см.рис.6.1,а).

Представляет интерес выразить вектор плотности тока через характеристики, описывающие движение свободных зарядов в проводнике. В качестве примера рассмотрим электрический ток в металле, где валентные электроны образуют газ свободных частиц, заполняющих кристаллическую решетку положительно заряженных ионов.

При отсутствии электрического поля в проводнике свободные электроны участвуют только в тепловом движении со средней арифметической скоростью , определяемой по формуле

где - постоянная Больцмана, - масса электрона, - температура. При комнатной температуре .

Из-за хаотичности теплового движения электронов электрического тока не возникает ( =0), так как через поперечное сечение проводника в обе стороны проходит одинаковое число электронов, и поэтому суммарный перенос заряда равен нулю.



При включении электрического поля у электронов появляется добавочная скорость - средняя скорость направленного движения под действием сил электрического поля. Именно обеспечивает наличие тока в проводнике.

Через поперечное сечение проводника площадью S за время t пройдут все электроны, находящиеся в цилиндре высотой () (см.рис.6.1,б). Если ввести такую характеристику металла, как концентрацию свободных электронов, то тогда можно получить:

, (6.3)

где – заряд электрона или, в общем случае, свободной заряженной частицы, участвующей в создании электрического тока; N – число заряженных частиц в объеме V .

Приведем оценку модуля средней скорости направленного движения свободных электронов в металле . Учитывая числовые значения концентрации свободных электронов в металле n ~ 10 29 м -3 и предельно допустимую плотность тока, например, в медном проводнике j пред ~ 10 7 А/м 2 , из формулы (6.3) получим:

Из последнего выражения следует, что скорость < > упорядоченного движения значительно меньше скорости теплового движения.