Солнце как источник энергии. Мощность солнечного излучения по регионам

Издавна люди говорили о Солнце как о могучем и великом, возвышая его в своих религиях до одушевленного объекта. Светилу поклонялись, ему возносили хвалу, им мерили время и всегда считали его первоисточником земных благ.

Необходимость в солнечной энергии

Прошли тысячелетия. Человечество вступило в новую эру своего развития и пользуется плодами бурно развивающегося технологического прогресса. Однако и по сегодняшний день именно Солнце представляет собой основной природный источник тепла, а, следовательно, и жизни.

Как человечество использует Солнце в повседневной своей деятельности? Рассмотрим этот вопрос подробнее.

«Работа» Солнца

Небесное светило служит единственным источником той энергии, которая нужна для проведения фотосинтеза растений. Солнце приводит в движение круговорот воды, и только благодаря ему на нашей планете имеются все известные человечеству ископаемые виды топлива. И еще люди пользуются силой этой яркой звезды для того, чтобы обеспечить свои потребности в электрической и тепловой энергии. Без этого жизнь на планете была бы просто невозможна.

Основной источник энергии

Природа мудро заботится о том, чтобы человечество получало от небесного светила его дары. Доставка к Земле солнечной энергии осуществляется путем передачи радиационных волн на поверхность материков и вод. Причем до нас из всего посылаемого спектра доходят только:

1. Ультрафиолетовые волны. Они невидимы для человеческого глаза и составляют примерно 2% в общем спектре.

2. Световые волны. Это примерно половина энергии Солнца, которая достигает поверхности Земли. Благодаря световым волнам человек видит все краски окружающего его мира.

3. Инфракрасные волны. Они составляют примерно 49% спектра и нагревают поверхность воды и суши. Именно эти волны и являются наиболее востребованными в вопросах использования энергии Солнца на Земле.

Принцип преобразования инфракрасных волн

Каким образом происходит процесс использования энергии Солнца на Земле? Как и любое другое подобное действие, он осуществляется по принципу прямого превращения. Для этого нужна только специальная поверхность. Попадая на нее, солнечный свет проходит процесс превращения в энергию. Для получения тепла в этой схеме должен быть задействован коллектор. Он поглощает инфракрасные волны. Далее в устройстве, использующем энергию Солнца, непременно присутствуют накопители. Для нагревания конечного продукта устраивают специальные теплообменники.

Цель, которую преследует солнечная энергетика, - получение столь необходимого для человечества тепла и света. Новую отрасль порой называют гелиоэнергетикой. Ведь Helios в переводе с греческого - Солнце.

Работа комплекса

Теоретически каждый из нас может произвести расчет солнечной установки. Ведь известно, что, пройдя путь от единственной звезды нашей галактической системы до Земли, поток световых лучей принесет с собой энергетический заряд, равный 1367 Вт на квадратный метр. Это так называемая солнечная постоянная, которая существует на входе в атмосферные слои. Такой вариант возможен только при идеальных условиях, которых в природе просто не существует. После прохождения атмосферы солнечные лучи принесут на экватор 1020 Вт на квадратный метр. Но из-за смены дневного и ночного времени суток мы сможем получить в три раза меньшее значение. Что касается умеренных широт, то здесь меняется не только длительность светового дня, но и сезонность. Таким образом, получение электроэнергии в местах, далеких от экватора, при расчете нужно будет уменьшить еще в два раза.

География излучений небесного Светила

Где может достаточно эффективно работать солнечная энергетика? Природные условия для размещения установок играют немаловажную роль в этой развивающейся отрасли.
Распределение солнечного излучения на поверхности Земли происходит неравномерно. В одних регионах луч Солнца - долгожданный и редкий гость, в других он способен угнетающе воздействовать на все живое.

То количество солнечного излучения, которое получает тот или иной район, зависит от широты его нахождения. Самые большие дозы энергии природного светила получают государства, находящиеся рядом с экватором. Но и это еще не все. Объем солнечного потока зависит от количества ясных дней, которые изменяются при переходе от одной климатической зоны к другой. Увеличить или уменьшить степень излучения способны воздушные потоки и прочие особенности региона. Преимущества энергии Солнца более всего знакомы:

Странам северо-восточной Африки и некоторым юго-западным и центральным областям континента;
- жителям Аравийского полуострова;
- восточному побережью Африки;
- северо-западной Австралии и некоторым островам Индонезии;
- западному побережью Южной Америки.

Что касается России, то, как показывают произведенные на ее территории замеры, наибольшим дозам солнечного излучения радуются районы, граничащие с Китаем, а также северные зоны. А где в нашей стране Солнце обогревает Землю меньше всего? Это северо-западный регион, в который входит Санкт-Петербург и прилегающие к нему области.

Электростанции

Сложно представить себе нашу жизнь без использования энергии Солнца на Земле. Как применить ее? Использовать лучи света можно для выработки электричества. Потребность в нем растет с каждым годом, а запасы газа, нефти и угля сокращаются стремительными темпами. Именно поэтому в последние десятилетия люди стали строить солнечные электростанции. Ведь эти установки позволяют использовать альтернативные источники энергии, значительно экономя природные ископаемые.

Солнечные электростанции работают благодаря встроенным в их поверхность фотоэлементам. Причем в последние годы удалось значительно повысить КПД работы таких систем. Солнечные установки стали выпускать из новейших материалов и с использованием креативных инженерных решений. Это значительно увеличило их мощность.

По мнению некоторых исследователей, уже в ближайшем будущем человечество может отказаться от существующих ныне традиционных путей получения электроэнергии. Потребности людей полностью удовлетворит небесное светило.

Солнечные электростанции могут иметь различные размеры. Самые небольшие из них - частные. В этих системах предусмотрено всего несколько солнечных панелей. Самые большие и сложные установки занимают площади, превышающие десять квадратных километров.

Все солнечные электростанции делят на шесть типов. Среди них:

Башенные;
- установки с фотоэлементами;
- тарельчатые;
- параболические;
- солнечно-вакуумные;
- смешанные.

Самым распространенным типом электростанции является башенный. Это высокая конструкция. Внешне она напоминает башню с расположенным на ней резервуаром. Емкость наполнена водой и выкрашена в черный цвет. Вокруг башни находятся зеркала, площадь которых превышает 8 квадратных метров. Вся эта система подключена к единому пульту управления, благодаря которому можно направлять угол наклона зеркал таким образом, чтобы они постоянно отражали солнечный свет. Лучи, направленные на резервуар, нагревают воду. Система выдает пар, который и направляется для выработки электроэнергии.

При работе электростанций фотоэлементного типа используются солнечные батареи. Сегодня подобные установки стали особенно популярными. Ведь солнечные батареи могут быть установлены небольшими блоками, что позволяет применять их не только для промышленных предприятий, но и для частных домов.

Если вы увидите целый ряд огромных по своему размеру спутниковых антенн, на внутренней стороне которых установлены зеркальные пластины, то знайте, что это параболические электростанции, работающие на излучении Солнца. Принцип их действия схож с такими же системами башенного типа. Они ловят пучок света и нагревают приемник с жидкостью. Далее вырабатывается пар, который и идет на производство электроэнергии.

Тарельчатые станции работают так же, как и те, которые относят к башенному и параболическому типу. Отличия кроются лишь в конструктивных особенностях установки. На первый взгляд она похожа на металлическое дерево огромных размеров, листьями которого являются плоские зеркала круглой формы. В них и концентрируется солнечная энергия.

Необычный способ получения тепла использован в солнечно-вакуумной электростанции. Ее конструкция представляет собой участок земли, накрытый круглой крышей. В центре этого сооружения возвышается полая башня, в основании которой и установлены турбины. Вращение лопастей такой электростанции происходит благодаря потоку воздуха, который возникает при разности температур. Стеклянная крыша пропускает лучи Солнца. Они нагревают землю. Температура воздуха внутри помещения повышается. Разность показаний столбиков термометров внутри и снаружи и создает воздушную тягу.

Солнечная энергетика задействует и электростанции смешанного типа. О таких системах можно говорить в тех случаях, когда, например, на башнях применяются дополнительные фотоэлементы.

Достоинства и недостатки солнечной энергетики

У каждой отрасли народного хозяйства есть свои положительные и отрицательные стороны. Имеются они и при использовании световых потоков. Плюсы солнечной энергетики заключены в следующем:

Экологичность, ведь она не загрязняет окружающую среду;
- доступность основных составляющих - фотоэлементов, которые реализуются не только для промышленного применения, но и для создания личных небольших электростанций;
- неисчерпаемость и самовосстанавливаемость источника;
- постоянно снижающаяся себестоимость.

Среди недостатков солнечной энергетики можно выделить:

Влияние времени суток и погодных условий на производительность электростанций;
- необходимость в аккумулировании энергии;
- снижение производительности в зависимости от широты, на которой расположен регион, и от времени года;
- большой нагрев воздуха, который имеет место на самой электростанции;
- потребность в периодической чистке от загрязнения, в которой нуждается система солнечных батарей, что проблематично в связи с огромными площадями, на которых установлены фотоэлементы;
- относительно высокая стоимость оборудования, которая хоть и снижается с каждым годом, но пока еще недоступна для массового потребителя.

Перспективы развития

Каковы дальнейшие возможности использования энергии Солнца на Земле? На сегодняшний день этому альтернативному комплексу пророчат большое будущее.

Перспективы солнечной энергетики радужны. Ведь уже сегодня в этом направлении идут огромные по своим масштабам работы. Каждый год в различных странах мира появляется все больше и больше солнечных электростанций, размеры которых поражают своими техническими решениями и масштабами. Кроме того, специалисты данной отрасли не прекращают проводить научные исследования, цель которых - многократное увеличение коэффициента полезного действия используемых на таких установках фотоэлементов.

Ученые произвели интересный расчет. Если на суше планеты Земля установить фотоэлементы, которые бы расположились на семи сотых ее территории, то они, даже имея КПД 10%, обеспечили бы все человечество необходимым ему теплом и светом. И это не столь уж далекая перспектива. Ведь фотоэлементы, которые используются на сегодняшний день, имеют КПД, равный 30%. При этом ученые надеются довести это значение до 85%.

Развитие солнечной энергетики идет достаточно высокими темпами. Люди серьезно озабочены проблемой истощения природных ресурсов и занимаются выявлением альтернативных источников тепла и света. Такое решение позволит предупредить неизбежный для человечества энергетический кризис, а также надвигающуюся экологическую катастрофу.

На сегодняшний день проблема расхода энергии стоит достаточно остро - ресурсы планеты не бесконечны и за время своего существования человечество изрядно опустошило то, что было дано природой. На данный момент активно проводится добыча угля и нефти, запасы которых с каждым днем становятся все меньше. позволила человечеству сделать невероятный шаг в будущее и использовать атомную энергию, привнеся вместе с этим благом огромную опасность для всей окружающей среды.

Не менее остро стоит вопрос экологический - активная добыча ресурсов и их дальнейшее использование пагубно сказывается на состоянии планеты, изменяя не только природу почв, но даже климатические условия.

Именно поэтому особенное внимание всегда уделялось естественным источникам энергии, таким, к примеру, как вода или ветер. Наконец, спустя столько лет активных исследований и разработок человечество «доросло» до использования энергии Солнца на Земле. Именно о нем и пойдет далее речь.

Что в этом привлекательного

Прежде чем переходить к конкретным примерам, выясним, чем же так сильно заинтересовал этот вид добычи энергии исследователей всего мира. Основным его достоянием можно назвать неисчерпаемость. Несмотря на многочисленные гипотезы, вероятность того, что звезда вроде Солнца погаснет в ближайшее время, крайне мала. Значит, перед человечеством открыта возможность получать чистую энергию совершенно естественным путем.

Второе несомненное преимущество использования энергии Солнца на Земле заключается в экологичности этого варианта. Воздействие на окружающую среду при таких условиях будет нулевым, что в свою очередь обеспечивает всему миру куда более светлое будущее, нежели то, которое открывается при постоянной добыче ограниченных подземных ресурсов.

Наконец, следует уделить отдельное внимание тому факту, что Солнца представляет наименьшую опасность для самого человека.

Как на самом деле

Теперь перейдем к сути. Под несколько поэтичным названием «солнечная энергия» скрывается на самом деле преобразование радиации в электричество при помощи специально разработанных технологий. Данный процесс обеспечивают фотоэлектрические элементы, которые человечество чрезвычайно активно использует в своих целях, причем достаточно успешно.

Солнечная радиация

Так уж сложилось исторически, что существительное «радиация» вызывает у человека скорее негативные ассоциации, нежели позитивные в связи с теми техногенными катастрофами, которые миру удалось пережить на своем веку. Тем не менее технология использования энергии Солнца на Земле предусматривает работу именно с ней.

По сути, данный вид радиации представляет собой электромагнитное излучение, диапазон которого находится в промежутке от 2,8 до 3,0 мкм.

Столь успешно используемый человечеством солнечный спектр состоит на самом деле из трех видов волн: ультрафиолетовых (примерно 2%), примерно 49% составляют световые волны и, наконец, еще столько же приходится на Солнечная энергия имеет небольшое количество других составляющих, однако роль их столь незначительна, что особого воздействия на жизнь Земли они не имеют.

Количество солнечной энергии, попадающей на Землю

Теперь, когда состав используемого на благо человечества спектра определен, следует отметить еще одну важную особенность данного ресурса. Использование солнечной энергии на Земле кажется весьма перспективным еще и потому, что она доступна в довольно большом количестве при практически минимальных затратах на переработку. Общее количество излучаемой звездой энергии чрезвычайно велико, однако до поверхности Земли доходит примерно 47%, что равно семистам квадриллионам киловатт-часов. Для сравнения отметим, что всего один киловатт-час сможет обеспечить десятилетнюю работу лампочки мощностью в сто ватт.

Мощность излучения Солнца и использование энергии на Земле, конечно, зависит от целого ряда факторов: климатических условий, угла падения лучей на поверхность, времени года и географического положения.

Когда и сколько

Несложно догадаться, что суточное количество солнечной энергии, попадающей на поверхность Земли, постоянно меняется, поскольку напрямую зависит от положения планеты по отношению к Солнцу и движения самого светила. Давно известен тот факт, что в полдень излучение максимально, в то время как утром и вечером количество достигающих поверхности лучей значительно меньше.

С уверенностью можно говорить о том, что использование энергии Солнца будет наиболее продуктивно в регионах, максимально приближенных к экваториальной полосе, поскольку именно там разница между высшими и низшими показателями минимальна, что говорит о максимальном количестве радиации, достигающей поверхности планеты. К примеру, на территории пустынных африканских участков годовое количество излучения достигает в среднем 2200 киловатт-часов, в то время как на территории Канады или, к примеру, Центральной Европы показатели не превышают 1000 киловатт-часов.

Солнечная энергетика в истории

Если мыслить максимально широко, попытки «приручить» великое светило, согревающее нашу планету, начались еще в глубокой древности во времена язычества, когда каждая стихия была воплощена отдельным божеством. Однако, конечно, тогда об использовании солнечной энергии даже речи быть не могло - в мире царила магия.

Тема использования энергии Солнца на Земле стала активно подниматься только в конце XIV - начале ХХ века. Настоящий прорыв в науке был совершен в 1839 году Александром Эдмоном Беккерелем, которому удалось стать первооткрывателем фотогальванического эффекта. Изучение данной темы значительно усилилось, и уже через 44 года Чарльз Фриттс смог сконструировать первый в истории модуль, в основе которого был позолоченный селен. Такое использование энергии Солнца на Земле давало небольшое количество высвобождаемого электричества - общее количество выработки тогда составило не более 1%. Тем не менее для всего человечества это стало настоящим прорывом, открывшим новые горизонты науки, о которых ранее не приходилось даже мечтать.

Весомый вклад в развитие солнечной энергетики внес в свое время сам Альберт Эйнштейн. В современном мире имя ученого чаще связывают с его знаменитой теорией относительности, однако на самом деле Нобелевской премии он был удостоен именно за изучение

До наших дней технология использования энергии Солнца на Земле переживает то стремительные взлеты, то не менее стремительные падения, однако эта отрасль знаний постоянно пополняется новыми фактами, и можно надеяться, что уже в обозримом будущем перед нами откроется дверь в совершенно новый мир.

Природа против нас

О достоинствах использования энергии Солнца на Земле мы уже говорили. Теперь обратим внимание на недостатки данного метода, которых, к сожалению, не меньше.

Из-за прямой зависимости от географического положения, климатических условий и движения Солнца выработка солнечной энергии в достаточном количестве требует огромных территориальных затрат. Суть заключается в том, что чем больше будет площадь потребления и переработки солнечной радиации, тем большее количество экологически чистой энергии мы получим на выходе. Размещение же таких огромных систем требует большого количества свободной площади, что вызывает определенные затруднения.

Еще одна проблема, касающаяся использования энергии Солнца на Земле, заключается в прямой зависимости от времени суток, поскольку выработка ночью будет нулевой, а в утреннее и вечернее время крайне незначительной.

Дополнительным фактором риска является сама погода - резкие смены условий могут крайне негативно сказаться на работе такого рода системы, поскольку вызывают затруднения в отладке необходимой мощности. В некотором смысле ситуации с резкой сменой количества поглощения и выработки могут быть опасными.

Чисто, но дорого

Использование солнечной энергии на Земле затруднительно на данный момент из-за ее дороговизны. Фотоэлементы, необходимые для осуществления основных процессов, имеют достаточно высокую стоимость. Конечно, положительные стороны использования такого рода ресурса делают его окупаемым, однако с экономической точки зрения на данный момент не приходится говорить о полной окупаемости денежных затрат.

Тем не менее, как показывает тенденция, цена на фотоэлементы постепенно падает, так что со временем данная проблема может быть полностью решена.

Неудобство процесса

Использование Солнца как источника энергии представляет затруднение еще и потому, что данный способ обработки ресурсов довольно трудоемок и неудобен. Потребление и переработка радиации напрямую зависят от чистоты пластин, которую обеспечить довольно проблематично. Кроме того, крайне негативно на процессе сказывается и нагревание элементов, которое можно предотвратить только использованием мощнейших систем охлаждения, что требует дополнительных материальных затрат, причем немалых.

Кроме того, пластины, используемые в гелиоколлекторах, после 30 лет активной работы постепенно приходят в негодность, а о стоимости фотоэлементов говорилось ранее.

Экологический вопрос

Ранее говорилось, что использование такого рода ресурса сможет избавить человечество от достаточно серьезных проблем с окружающей средой в будущем. Источник ресурсов и конечный продукт действительно экологически максимально чисты.

Тем не менее использование энергии Солнца, принцип работы гелиоколлекторов заключается в применении специальных пластин с фотоэлементами, для изготовления которых требуется масса ядовитых веществ: свинца, мышьяка или калия. Само их использование вреда окружающей среде не приносит, однако, учитывая ограниченный срок их эксплуатации, со временем утилизация пластин может стать серьезной проблемой.

Для ограничения негативного воздействия на экологию производители постепенно переходят на тонкопленочные пластины, которые имеют более низкую стоимость и менее пагубно сказываются на окружающей среде.

Способы преобразования радиации в энергию

Фильмы и книги о будущем человечества дают нам почти всегда примерно одинаковую картину данного процесса, которая, по сути, может существенно отличаться от действительности. Существует несколько способов преобразования.

Самым распространенным можно назвать уже описанное ранее задействование фотоэлементов.

В качестве альтернативы человечество активно использует гелиотермальную энергетику, основанную на нагреве специальных поверхностей, который позволяет при должном направлении полученной температуры нагревать воду. Если упростить данный процесс максимально, его можно сравнить с баками, которые используются для летнего душа в домах частного сектора.

Еще одним способом применения излучения для выработки энергии является «солнечный парус», который может действовать только в Такого рода система преобразует радиацию в

Проблема отсутствия выработки в ночное время суток частично решается солнечными аэростатными электростанциями, работа которых продолжается благодаря аккумуляции выделяемой энергии и длительности процесса остывания.

Мы и солнечная энергия

Ресурсы энергии солнца и ветра на Земле используются довольно активно, хотя мы часто и не замечаем этого. Ранее уже упоминалось простонародное нагревание воды в летнем душе. По сути, чаще всего солнечная энергия используется именно для этих целей. Тем не менее есть масса других примеров: почти в каждом магазине осветительной техники можно найти накопительные лампочки, которые могут работать без электрического тока даже ночью благодаря энергии, аккумулированной за день.

Установки на основе фотоэлементов активно используются на всевозможных насосных станциях и вентиляционных системах.

Вчера, сегодня, завтра

Один из важнейших ресурсов для человечества - солнечная энергия, и перспективы ее использования чрезвычайно велики. Данная отрасль активно финансируется, расширяется и совершенствуется. Сейчас солнечная энергетика максимально развита в США, где некоторые регионы используют ее как полноценный альтернативный источник питания. Так же электростанции такого типа работают в Другие же страны давно взяли курс на данный вид получения электроэнергии, что в скором времени, возможно, решит проблему загрязнения окружающей среды.

Солнечная энергия

Параметры солнечного излучения

Прежде всего необходимо оценить потенциальные энергетические возможности солнечного излучения. Здесь наибольшее значение имеет его общая удельная мощность у поверхности Земли и распределение этой мощности по разным диапазонам излучения.

Мощность солнечного излучения

Мощность излучения Солнца, находящегося в зените, у поверхности Земли оценивается примерно в 1350 Вт/м2. Простой расчёт показывает, что для получения мощности 10 кВт необходимо собрать солнечное излучение с площади всего лишь 7.5 м2. Но это — в ясный полдень в тропической зоне высоко в горах, где атмосфера разрежена и кристально прозрачна. Как только Солнце начинает склоняться к горизонту, путь его лучей сквозь атмосферу увеличивается, соответственно, возрастают и потери на этом пути. Присутствие в атмосфере пыли или паров воды, даже в неощутимых без специальных приборов количествах, ещё более снижает поток энергии. Однако и в средней полосе в летний полдень на каждый квадратный метр, ориентированный перпендикулярно солнечным лучам, приходится поток солнечной энергии мощностью примерно 1 кВт.

Конечно, даже небольшая облачность резко уменьшает энергию, достигающую поверхности, особенно в инфракрасном (тепловом) диапазоне. Тем не менее, часть энергии всё равно проникает сквозь тучи. В средней полосе при сильной облачности в полдень мощность солнечного излучения, дошедшего до поверхности Земли, оценивается примерно в 100 Вт/м2 и лишь в редких случаях при особо плотной облачности может опускаться ниже этой величины. Очевидно, что в таких условиях для получения 10 кВт необходимо полностью, без потерь и отражения, собрать солнечное излучение уже не с 7.5 м2 земной поверхности, а с целой сотки (100 м2).

В таблице приведены краткие усреднённые данные по энергии солнечного излучения для некоторых городов России с учётом климатических условий (частоты и силы облачности) на единицу горизонтальной поверхности. Детализация этих данных, дополнительные данные для ориентаций панелей, отличных от горизонтальной, а также данные для других областей России и стран бывшего СССР приведены на отдельной странице .

Город

месячный минимум
(декабрь)

месячный максимум
(июнь или июль)

суммарно за год

Архангельск

4 МДж / м 2 (1.1 кВт·ч / м 2)

575 МДж / м 2 (159.7 кВт·ч / м 2)

3.06 ГДж / м 2 (850 кВт·ч / м 2)

Астрахань

95.8 МДж / м 2 (26.6 кВт·ч / м 2)

755.6 МДж / м 2 (209.9 кВт·ч / м 2)

4.94 ГДж / м 2 (1371 кВт·ч / м 2)

Владивосток

208.1 МДж / м 2 (57.8 кВт·ч / м 2)

518.0 МДж / м 2 (143.9 кВт·ч / м 2)

4.64 ГДж / м 2 (1289.5 кВт·ч / м 2)

Екатеринбург

46 МДж / м 2 (12.8 кВт·ч / м 2)

615 МДж / м 2 (170.8 кВт·ч / м 2)

3.76 ГДж / м 2 (1045 кВт·ч / м 2)

Москва

42.1 МДж / м 2 (11.7 кВт·ч / м 2)

600.1 МДж / м 2 (166.7 кВт·ч / м 2)

3.67 ГДж / м 2 (1020.7 кВт·ч / м 2)

Новосибирск

638 МДж / м 2 (177.2 кВт·ч / м 2)

4.00 ГДж / м 2 (1110 кВт·ч / м 2)

Омск

56 МДж / м 2 (15.6 кВт·ч / м 2)

640 МДж / м 2 (177.8 кВт·ч / м 2)

4.01 ГДж / м 2 (1113 кВт·ч / м 2)

Петрозаводск

8.6 МДж / м 2 (2.4 кВт·ч / м 2)

601.6 МДж / м 2 (167.1 кВт·ч / м 2)

3.10 ГДж / м 2 (860.0 кВт·ч / м 2)

Петропавловск-Камчатский

83.9 МДж / м 2 (23.3 кВт·ч / м 2)

560.9 МДж / м 2 (155.8 кВт·ч / м 2)

3.95 ГДж / м 2 (1098.4 кВт·ч / м 2)

Ростов-на-Дону

80 МДж / м 2 (22.2 кВт·ч / м 2)

678 МДж / м 2 (188.3 кВт·ч / м 2)

4.60 ГДж / м 2 (1278 кВт·ч / м 2)

Санкт-Петербург

8 МДж / м 2 (2.2 кВт·ч / м 2)

578 МДж / м 2 (160.6 кВт·ч / м 2)

3.02 ГДж / м 2 (840 кВт·ч / м 2)

Сочи

124.9 МДж / м 2 (34.7 кВт·ч / м 2)

744.5 МДж / м 2 (206.8 кВт·ч / м 2)

4.91 ГДж / м 2 (1365.1 кВт·ч / м 2)

Южно-Сахалинск

150.1 МДж / м 2 (41.7 кВт·ч / м 2)

586.1 МДж / м 2 (162.8 кВт·ч / м 2)

4.56 ГДж / м 2 (1267.5 кВт·ч / м 2)

Неподвижная панель, размещённая под оптимальным углом наклона, способна воспринять в 1.2 .. 1.4 раза больше энергии по сравнению с горизонтальной, а если она будет поворачиваться вслед за Солнцем, то прибавка составит 1.4 .. 1.8 раза. В этом можно убедиться, с разбивкой по месяцам для неподвижных панелей, ориентированных на юг под разными углами наклона, и для систем, отслеживающих движение Солнца. Особенности размещения солнечных панелей более подробно обсуждаются ниже .

Прямое и рассеянное солнечное излучение

Различают рассеянное и прямое солнечное излучение. Для эффективного восприятия прямого солнечного излучения панель должна быть ориентирована перпендикулярно потоку солнечного света. Для восприятия рассеянного излучения ориентация не так критична, так как оно достаточно равномерно приходит почти со всего небосвода — именно так освещается земная поверхность в пасмурные дни (по этой причине в пасмурную погоду предметы не имеют чётко оформленной тени, а вертикальные поверхности, такие как столбы и стены домов, практически не отбрасывают видимую тень).

Соотношение прямого и рассеянного излучения сильно зависит от погодных условий в разные сезоны. Например, в Москве зима пасмурная, и в январе доля рассеянного излучения превышает 90% от общей инсоляции. Но даже московским летом рассеянное излучение составляет почти половину от всей солнечной энергии, достигающей земной поверхности. В то же время в солнечном Баку и зимой, и летом доля рассеянного излучения составляет от 19 до 23% общей инсоляции, а около 4/5 солнечного излучения, соответственно, является прямым. Более подробно соотношение рассеянной и полной инсоляции для некоторых городов приведено на отдельной странице .

Распределение энергии в солнечном спектре

Солнечный спектр является практически непрерывным в крайне широком диапазоне частот — от низкочастотного радиоволнового до сверхвысокочастотного рентгеновского и гамма-излучения. Безусловно, трудно одинаково эффективно улавливать столь разные виды излучения (пожалуй, это можно осуществить лишь теоретически с помощью «идеального абсолютно чёрного тела»). Но это и не надо — во-первых, само Солнце в разных частотных диапазонах излучает с различной силой, а во-вторых, не всё, что излучило Солнце, достигает поверхности Земли — отдельные участки спектра в значительной степени поглощаются разными компонентами атмосферы — преимущественно озоновым слоем, парами воды и углекислым газом.

Поэтому нам достаточно определить те диапазоны частот, в которых наблюдается наибольший поток солнечной энергии у поверхности Земли, и использовать именно их. Традиционно солнечное и космическое излучение разделяется не по частоте, а по длине волны (это связано со слишком большими показателями степени для частот этого излучения, что весьма неудобно — видимому свету в герцах соответствует 14-й порядок). Посмотрим же зависимость распределения энергии от длины волны для солнечного излучения.

Диапазоном видимого света считается участок длин волн от 380 нм (глубокий фиолетовый) до 760 нм (глубокий красный). Всё, что имеет меньшую длину волны, обладает более высокой энергией фотонов и подразделяется на ультрафиолетовый, рентгеновский и гамма- диапазоны излучения. Невзирая на высокую энергию фотонов, самих фотонов в этих диапазонах не так уж много, поэтому общий энергетический вклад этого участка спектра весьма мал. Всё, что имеет бóльшую длину волны, обладает меньшей по сравнению с видимым светом энергией фотонов и подразделяется на инфракрасный диапазон (тепловое излучение) и различные участки радиодиапазона. Из графика видно, что в инфракрасном диапазоне Солнце излучает практически столько же энергии, как и в видимом (уровни меньше, зато диапазон шире), а вот в радиочастотном диапазоне энергия излучения очень мала.

Таким образом, с энергетической точки зрения нам достаточно ограничиться видимым и инфракрасным частотными диапазонами, а также ближним ультрафиолетом (где-то до 300 нм, более коротковолновый жёсткий ультрафиолет практически полностью поглощается в так называемом озоновом слое, обеспечивая синтез этого самого озона из атмосферного кислорода). А львиная доля солнечной энергии, достигающей поверхности Земли, сосредоточена в диапазоне длин волн от 300 до 1800 нм.

Ограничения при использовании солнечной энергии

Главные ограничения, связанные с использованием солнечной энергии, вызваны её непостоянством — солнечные установки не работают ночью и малоэффективны в пасмурную погоду. Это очевидно практически всем.

Однако есть и ещё одно обстоятельство, которое особенно актуально для наших довольно северных широт — это сезонные различия в продолжительности дня. Если для тропической и экваториальной зоны длительность дня и ночи слабо зависит от времени года, то уже на широте Москвы самый короткий день меньше самого длинного почти в 2.5 раза! Про приполярные области я уже не говорю... В результате в ясный летний день солнечная установка под Москвой может произвести энергии не меньше, чем на экваторе (солнце пониже, зато день длиннее). Однако зимой, когда потребность в энергии особенно высока, её выработка, наоборот, снизится в несколько раз. Ведь помимо короткого светового дня, лучи низкого зимнего солнца даже в полдень должны проходить гораздо более толстый слой атмосферы и потому теряют на этом пути существенно больше энергии, чем летом, когда солнце стоит высоко и лучи идут сквозь атмосферу почти отвесно (выражение «холодное зимнее солнце» имеет самый прямой физический смысл). Тем не менее, это вовсе не означает, что солнечные установки в средней полосе и даже в гораздо более северных районах совсем бесполезны — хотя зимой от них мало пользы, эато в период длинных дней, как минимум полгода между весенним и осенним равноденствиями, они вполне эффективны.

Особенно интересно применение солнечных установок для приведения в действие всё шире рас-прос-тра-ня-ю-щих-ся, но весьма «прожорливых» кондиционеров. Ведь чем сильнее светит солнце, тем жарче и тем нужнее кондиционер. Но в таких условиях и солнечные установки способны выработать больше энергии, причём эта энергия будет использована кондиционером именно «здесь и сейчас», её не надо аккумулировать и хранить! К тому же совсем необязательно преобразовывать энергию в электрическую форму — абсорбционные тепловые машины используют тепло непосредственно, а это значит, что вместо фотоэлектрических батарей можно использовать солнечные коллекторы , наиболее эффективные как раз в ясную жаркую погоду. Правда, я считаю, что кондиционеры незаменимы лишь в жарких безводных регионах и во влажном тропическом климате, а также в современных городах независимо от их месторасположения. Грамотно спроектированный и построенный загородный дом не только в средней полосе, но и на большей части юга России не нуждается в столь энергетически прожорливом, громоздком, шумном и капризном устройстве.

К сожалению, в условиях городской застройки индивидуальное использование более-менее мощных солнечных установок со сколько-нибудь заметной практической пользой возможно лишь в редких случаях особо удачного стечения обстоятельств. Впрочем, я не считаю городскую квартиру полноценным жильём, поскольку её нормальное функционирование зависит от слишком большого количества факторов, не доступных непосредственному контролю жильцов по чисто техническим причинам, а потому в случае выхода из строя на более-менее длительное время хотя бы одной из систем жизнеобеспечения современного многоквартирного дома условия там не будут приемлемы для жизни (скорее, квартиру в многоэтажке надо рассматривать как своего рода гостиничный номер, который жильцы выкупили в бессрочное пользование или арендуют у муниципалитета). Зато за городом особое внимание к солнечной энергии может быть более чем оправданным даже на маленьком участке в 6 соток.

Особенности размещения солнечных панелей

Выбор оптимальной ориентации солнечных панелей является одним из важнейших вопросов при практическом использовании солнечных установок любого типа. К сожалению, на различных сайтах, посвящённых солнечной энергии, этот аспект рассматривается очень мало, хотя пренебрежение им способно снизить эффективность панелей до неприемлемого уровня.

Дело в том, что угол падения лучей на поверхность сильно влияет на коэффициент отражения, а следовательно, на долю невоспринятой солнечной энергии. Например, для стекла при отклонении угла падения от перпендикуляра к его поверхности до 30° коэффициент отражения практически не меняется и составляет чуть менее 5%, т.е. более 95% падающего излучения проходят внутрь. Далее рост отражения становится заметным, и к 60° доля отражённого излучения увеличивается вдвое — почти до 10%. При угле падения 70° отражается около 20% излучения, а при 80° — 40%. Для большинства других веществ зависимость степени отражения от угла падения имеет примерно тот же характер.

Ещё важнее так называемая эффективная площадь панели, т.е. перекрываемое ею сечение потока излучения. Она равна реальной площади панели, умноженной на синус угла между её плоскостью и направлением потока (или, что то же самое, на косинус угла между перепендикуляром к панели и направлением потока). Поэтому, если панель перпендикулярна потоку, её эффективная площадь равна её реальной площади, если поток отклонился от перпендикуляра на 60° — половине реальной площади, а если поток параллелен панели, её эффективная площадь равна нулю. Таким образом, существенное отклонение потока от перпендикуляра к панели не только увеличивает отражение, но снижает её эффективную площадь, что обуславливает очень заметное падение выработки.

Очевидно, что для наших целей наиболее эффективна постоянная ориентация панели перпендикулярно потоку солнечных лучей. Но это потребует изменения положения панели в двух плоскостях, поскольку положение Солнца на небе зависит не только от времени суток, но и от времени года. Хотя такая система, безусловно, технически возможна, она получается весьма сложной, а потому дорогой и не слишком надёжной.

Однако вспомним, что при углах падения до 30° коэффициент отражения на границе «воздух-стекло» минимален и практически неизменен, а в течении года угол максимального подъёма Солнца над горизонтом отклоняется от среднего положения не более чем на ±23°. Эффективная площадь панели при отклонении от перпендикуляра на 23° также остаётся достаточно большой — не менее 92% от её реальной площади. Поэтому можно ориентироваться на среднегодовую высоту максимального подъёма Солнца и практически без потери эффективности ограничиться вращением лишь в одной плоскости — вокруг полярной оси Земли со скоростью 1 оборот в сутки. Угол наклона оси такого вращения относительно горизонтали равен географической широте места. Например, для Москвы, расположенной на широте 56°, ось такого вращения должна быть наклонена на север на 56° относительно поверхности (или, что то же самое, отклонена от вертикали на 34°). Такое вращение организовать уже гораздо проще, однако для безпрепятственного вращения большой панели нужно немало места. Кроме того, необходимо либо организовать скользящее соединение, позволяющее отводить от постоянно вращающейся панели всю полученную ею энергию, либо ограничиться гибкими коммуникациями с фиксированным соединением, но обеспечить автоматический возврат панели обратно в ночное время, — в противном случае не избежать перекручивания и обрыва отводящих энергию коммуникаций. Оба решения резко повышают сложность и снижают надёжность системы. При возрастании мощности панелей (а значит, их размеров и веса) технические проблемы усложняются в геометрической прогрессии.

В связи со всем вышеизложенным, практически всегда панели индивидуальных солнечных установок монтируются неподвижно, что обеспечивает относительную дешевизну и высочайшую надёжность установки. Однако здесь особенно важным становится выбор угла размещения панели. Рассмотрим эту проблему на примере Москвы .


Оранжевая линия — при отслеживании положения Солнца вращением вокруг полярной оси (т.е. параллельно земной оси); синий — неподвижная горизонтальная панель; зелёный — неподвижная вертикальная панель, ориентированная на юг; красный — неподвижная панель, наклонённая на юг под углом 40° к горизонту.

Посмотрим на диаграммы инсоляции для различных углов установки панелей. Конечно, панель, поворачивающаяся вслед за Солнцем, вне конкуренции (оранжевая линия). Однако даже в длинные летние дни её эффективность превышает эффективность неподвижных горизонтальной (синяя) и наклонённой под оптимальным углом (красная) панелей всего лишь примерно на 30%. Но в эти дни тепла и света и так хватает! А вот в наиболее энергодефицитный период с октября по февраль преимущество поворотной панели над неподвижными минимально и практически неощутимо. Правда, в это время компанию наклонной панели составляет не горизонтальная, а вертикальная панель (зелёная линия). И это не удивительно — низкие лучи зимнего солнца скользят по горизонтальной панели, но хорошо воспринимаются почти перпендикулярной им вертикальной. Поэтому в феврале, ноябре и декабре вертикальная панель по своей эффективности превосходит даже наклонную и почти не отличается от поворотной. В марте и октябре день более длинный, и поворотная панель уже начинает уверенно (хотя и не очень сильно) превосходить любые неподвижные варианты, но эффективность наклонной и вертикальной панелей практически одинакова. И лишь в период длинных дней с апреля по август горизонтальная панель по полученной энергии опережает вертикальную и приближается к наклонной, а в июне даже чуть превосходит её. Летний проигрыш вертикальной панели закономерен — ведь, скажем, день летнего равноденствия длится в Москве более 17 часов, а в передней (рабочей) полусфере вертикальной панели Солнце может находиться не более 12 часов, остальные 5 с лишним часов (почти треть светового дня!) оно находится позади неё. Если же учесть, что при углах падения более 60° доля отражённого от поверхности панели света начинает стремительно расти, а её эффективная площадь сокращается в два раза и более, то время эффективного восприятия солнечного излучения для такой панели не превышает 8 часов — то есть менее 50% от общей продолжительности дня. Именно этим объясняется факт стабилизации производительности вертикальных панелей в течении всего периода длинных дней — с марта по сентябрь. И наконец, несколько особняком стоит январь — в этом месяце производительность панелей всех ориентаций практически одинакова. Дело в том, что этот месяц в Москве очень пасмурный, и более 90% всей солнечной энергии приходится нарассеянное излучение , а для такого излучения ориентация панели не слишком важна (главное, не направить её в землю). Однако несколько солнечных дней, всё же бывающих в январе, снижают выработку горизонтальной панели на 20% по сравнению с остальными.

Какой же угол наклона выбрать? Всё зависит от того, когда именно Вам нужна солнечная энергия. Если Вы хотите пользоваться ею только в тёплый период (скажем, на даче), то стоит выбрать так называемый «оптимальный» угол наклона, перпендикулярный к среднему положению Солнца в период между весенним и осенним равноденствиями. Он примерно на 10° .. 15° меньше географической широты и для Москвы составляет 40° .. 45°. Если же энергия Вам нужна круглогодично, то следует «выжимать» максимум именно в энергодефицитные зимние месяцы, а значит, надо ориентироваться на среднее положение Солнца между осенним и весенним равноденствиями и размещать панели ближе к вертикали — на 5° .. 15° больше географической широты (для Москвы это будет 60° .. 70°). Если же по архитектурным или конструктивным соображениям выдержать такой угол невозможно и надо выбирать между углом наклона в 40° и меньше или вертикальной установкой, следует предпочесть вертикальное положение. При этом «недобор» энергии в длинные летние дни не так критичен — в этот период полно естественного тепла и света, и потребность в выработке энергии обычно не так велика, как зимой и в межсезонье. Естественно, наклон панели должен быть ориентирован на юг, хотя отклонение от этого направления на 10° .. 15° к востоку или к западу мало что меняет и потому вполне допустимо.

Горизонтальное размещение солнечных панелей на всей территории России неэффективно и абсолютно неоправдано. Помимо слишком большого снижения выработки энергии в осенне-зимний период, на горизонтальных панелях интенсивно скапливается пыль, а зимой ещё и снег, и удалить их оттуда можно только с помощью специально организованной уборки (как правило, вручную). Если же наклон панели превышает 60°, то снег на её поверхности задерживается мало и обычно быстро осыпается сам по себе, а тонкий слой пыли хорошо смывается дождями.

Поскольку в последнее время цены на солнечное оборудование снижаются, может оказаться выгодным вместо единого поля солнечных панелей, ориентированного на юг, использовать два с большей суммарной мощностью , ориентированных на смежные (юго-восток и юго-запад) и даже противоположные (восток и запад) стороны света. Это обеспечит более равномерную выработку в солнечные дни и повышенную выработку в пасмурную погоду, при том, что остальное оборудование останется рассчитанным на прежнюю, относительно невысокую мощность, а потому будет более компактным и дешёвым.

И последнее. Стекло, поверхность которого не гладкая, а имеет специальный рельеф, способно гораздо более эффективно воспринимать боковой свет и передавать его на рабочие элементы солнечной панели. Наиболее оптимальным представляется волнообразный рельеф с ориентацией выступов и впадин с севера на юг (для вертикальных панелей — сверху вниз), — своеобразная линейная линза. Рифлёное стекло способно увеличить выработку неподвижной панели на 5% и более.

Традиционные типы установок для использования солнечной энергии

Время от времени появляются сообщения о строительстве очередной солнечной электростанции (СЭС) или опреснительной установки. По всему миру, от Африки до Скандинавии, применяются тепловые солнечные коллекторы и фотоэлектрические солнечные батареи. Эти методы использования солнечной энергии развиваются уже не один десяток лет, им посвящено множество сайтов в Интернете. Поэтому здесь я рассмотрю их в самых общих чертах. Впрочем, один важнейший момент в Интернете практически не освещается — это выбор конкретных параметров при создании индивидуальной системы солнечного энергоснабжения. Между тем этот вопрос не так прост, как кажется на первый взгляд. Пример выбора параметров для системы на солнечных батареях приведён на отдельной странице .

Солнечные батареи

Вообще говоря, под «солнечной батареей» можно понимать любой набор одинаковых модулей, воспринимающих солнечное излучение и объединённых в единое устройство, в том числе чисто тепловых, но традиционно этот термин закрепился именно за панелями фотоэлектрических преобразователей. Поэтому под термином «солнечная батарея» практически всегда подразумевается фотоэлектрическое устройство, непосредственно преобразующие солнечное излучение в электрический ток. Эта технология активно развивается с середины XX века. Огромным стимулом для её развития стало освоение космического пространства, где конкуренцию солнечным батареям по производимой мощности и длительности работы в настоящее время могут составить лишь малогабаритные ядерные источники энергии. За это время эффективность преобразования солнечных батарей возросла с одного-двух процентов до 17% и более в массовых относительно дешёвых моделях и свыше 42% в опытных образцах. Значительно увеличился срок службы и надёжность работы.

Достоинства солнечных батарей

Главное достоинство солнечных батарей — их предельная конструктивная простота и полное отсутствие подвижных деталей. Как следствие этого — небольшой удельный вес и неприхотливость в сочетании с высокой надёжностью, а также максимально простой монтаж и минимальные требования к обслуживанию во время эксплуатации (обычно достаточно лишь удалять с рабочей поверхности грязь по мере её накопления). Представляя собой плоские элементы малой толщины, они вполне успешно размещаются на обращённом к солнцу скате крыши или на стене дома, практически не требуя для себя какого-то дополнительного места и возведения отдельных громоздких конструкций. Единственное условие — ничто не должно затенять их в течении как можно большего времени.

Ещё одно важнейшее достоинство — это то, что энергия вырабатывается сразу в виде электричества — в наиболее универсальной и удобной на сегодняшний день форме.

К сожалению, ничто не вечно — эффективность фотоэлектрических преобразователей падает в течение срока службы. Полупроводниковые пластины, из которых обычно состоят солнечные батареи, со временем деградируют и утрачивают свои свойства, в результате и без того не слишком высокий КПД солнечных батарей становится ещё меньше. Длительное воздействие высоких температур ускоряет этот процесс. Сначала я отмечал это как недостаток фотоэлектрических батарей, тем более, что «севшие» фотоэлементы восстановить невозможно. Однако вряд ли какой-нибудь механический электрогенератор сможет продемонстрировать хотя бы 1% работоспособности всего лишь через 10 лет непрерывной работы — скорее всего он гораздо раньше потребует серьёзного ремонта из-за механического износа если не подшипников, то щёток, — а современные фотопреобразователи способны сохранять свою эффективность десятилетиями. По оптимистичным оценкам, за 25 лет КПД солнечной батареи уменьшается всего на 10%, а значит, если не вмешаются другие факторы, то даже через 100 лет сохранится почти 2/3 от первоначальной эффективности. Впрочем, для массовых коммерческих фотоэлементов на поли- и монокристаллическом кремнии честные изготовители и продавцы приводят несколько другие цифры старения — через 20 лет следует ожидать утраты до 20% эффективности (тогда теоретически через 40 лет эффективность составит 2/3 от первоначальной, сократится вдвое за 60 лет, а через 100 лет останется чуть менее 1/3 от исходной производительности). В общем, нормальный срок службы для современных фотопреобразователей составляет не менее 25 .. 30 лет, так что деградация не так критична, и гораздо важнее вовремя стирать с них пыль...

Если же батареи установить таким образом, чтобы естественное запыление практически отсутствовало либо своевременно смывалось естественными же дождями, то они смогут работать без какого-либо обслуживания в течение многих лет. Возможность столь долгой эксплуатации в необслуживаемом режиме — ещё одно важнейшее преимущество.

Наконец, солнечные батареи способны вырабатывать энергию с рассвета до заката даже в пасмурную погоду, когда тепловые солнечные коллекторы имеют температуру, лишь незначительно отличающуюся от температуры окружающего воздуха. Конечно, по сравнению с ясным солнечным днём их производительность падает во много раз, но лучше хоть что-то, чем совсем ничего! В связи с этим особенно интересны разработки батарей с максимумом преобразования энергии в тех диапазонах, где облака меньше всего поглощают солнечное излучение. Кроме того, при выборе солнечных фотопреобразователей следует обращать внимание на зависимость вырабатываемого ими напряжения от освещённости — она должна быть как можно меньшей (при снижении освещённости в первую очередь должен падать ток, а не напряжение, поскольку иначе для получения хоть какого-то полезного эффекта в пасмурные дни придётся использовать недешёвое дополнительное оборудование, принудительно повышающее напряжение до минимально достаточного для зарядки аккумуляторов и работы инверторов).

Недостатки солнечных батарей

Конечно, и недостатков у солнечных батарей немало. Помимо зависимости от погоды и времени суток, можно отметить следующее.

Невысокий КПД. Тот же солнечный коллектор при правильном выборе формы и материала поверхности способен поглотить почти всё попавшее на него солнечное излучение практически во всём спектре частот, несущих заметную энергию, — от дальнего инфракрасного до ультрафиолетового диапазона. Солнечные батареи же преобразуют энергию избирательно — для рабочего возбуждения атомов требуются определённые энергии фотонов (частоты излучения), поэтому в одних полосах частот преобразование идёт очень эффективно, а другие частотные диапазоны для них бесполезны. Кроме того, энергия уловленных ими фотонов используется квантово — её «излишки», превышающие нужный уровень, идут на вредный в данном случае нагрев материала фотопреобразователя. Во многом именно этим и объясняется их невысокий КПД.
Кстати, неудачно выбрав материал защитного покрытия, можно заметно снизить эффективность работы батареи. Дело усугубляется тем, что обычное стекло довольно хорошо поглощает высокоэнергетическую ультрафиолетовую часть диапазона, а для некоторых типов фотоэлементов весьма актуален именно этот диапазон, — энергия инфракрасных фотонов для них слишком мала.

Чувствительность к высокой температуре. С повышением температуры эффективность работы солнечных батарей, как и почти всех других полупроводниковых приборов, снижается. При температурах выше 100..125°С они вообще могут временно потерять работоспособность, а ещё больший нагрев грозит их необратимым повреждением. К тому же повышенная температура ускоряет деградацию фотоэлементов. Поэтому необходимо принимать все меры для снижения нагрева, неизбежного под палящими прямыми солнечными лучами. Обычно производители ограничивают номинальный диапазон рабочих температур фотоэлементов до +70°..+90°С (имеется в виду нагрев самих элементов, а температура окружающего воздуха, естественно, должна быть гораздо ниже).
Дополнительно осложняет ситуацию то, что чувствительная поверхность довольно хрупких фотоэлементов часто закрывается защитным стеклом или прозрачным пластиком. Если между защитным покровом и поверхностью фотоэлемента останется воздушная прослойка, то образуется своеобразный «парник», усугубляющий перегрев. Правда, увеличив расстояние между защитным стеклом и поверхностью фотоэлемента и соединив сверху и снизу эту полость с атмосферой, можно организовать конвекционный поток воздуха, естественным образом охлаждающий фотоэлементы. Однако на ярком солнце и при высокой температуре наружного воздуха этого может оказаться недостаточно, к тому же такой метод способствует ускоренному запылению рабочей поверхности фотоэлементов. Поэтому солнечная батарея даже не очень больших размеров может потребовать специальной системы охлаждения. Справедливости ради надо сказать, что подобные системы обычно легко автоматизируются, а привод вентилятора или помпы потребляет лишь малую долю вырабатываемой энергии. При отсутствии яркого солнца большого нагрева нет и охлаждение вообще не требуется, так что энергия, сэкономленная на приводе системы охлаждения, может быть использована для других целей. Следует заметить, что в современных панелях заводского изготовления защитное покрытие обычно плотно прилегает к поверхности фотоэлементов и отводит тепло наружу, но в самодельных конструкциях механический контакт с защитным стеклом может привести к повреждению фотоэлемента.

Чувствительность к неравномерности засветки. Как правило, для получения на выходе батареи напряжения, более-менее удобного для использования (12, 24 и более вольт), фотоэлементы соединяются в последовательные цепочки. Ток в каждой такой цепочке, а следовательно, и её мощность, определяется самым слабым звеном — фотоэлементом с худшими характеристиками или с наименьшей освещённостью. Поэтому если хотя бы один элемент цепочки оказывается в тени, он существенно снижает выработку всей цепочки — потери несоразмерны затенению (более того, при отсутствии защитных диодов такой элемент начнёт рассеивать мощность, вырабатываемую остальными элементами!). Избежать непропорционального снижения выработки можно, лишь соединив все фотоэлементы параллельно, однако тогда на выходе батареи будет слишком большой ток при слишком малом напряжении — обычно для отдельных фотоэлементов оно составляет всего 0.5 .. 0.7 В в зависимости от их типа и величины нагрузки.

Чувствительность к загрязнениям. Даже малозаметный слой грязи на поверхности фотоэлементов или защитного стекла может поглотить существенную долю солнечного света и заметно снизить выработку энергии. В пыльном городе это потребует частой очистки поверхности солнечных батарей, особенно установленных горизонтально или с небольшим наклоном. Безусловно, такая же процедура необходима и после каждого снегопада, и после пыльной бури... Однако вдали от городов, промышленных зон, оживлённых дорог и других сильных источников пыли при угле наклона 45° и более дожди вполне способны смывать естественное запыление с поверхности панелей, «автоматически» поддерживая их в достаточно чистом состоянии. Да и снег на таком уклоне, к тому же обращённом на юг, даже в весьма морозные дни обычно долго не задерживается. Так что вдали от источников атмосферных загрязнений панели солнечных батарей могут годами успешно работать вообще без какого-либо обслуживания, было бы солнце в небе!

Наконец, последнее, но важнейшее из препятствий для широкого и повсеместного распространения фотоэлектрических солнечных батарей — их довольно высокая цена. Себестоимость элементов солнечной батареи в настоящее время составляет минимум 1$/Вт (1 кВт —1000$), и это для малоэффективных модификаций без учёта стоимости сборки и монтажа панелей, а также без учёта цены аккумуляторов, контроллеров зарядки и инверторов (преобразователей вырабатываемого низковольтного постоянного тока к бытовому или промышленному стандарту). В большинстве случаев для минимальной оценки реальных затрат эти цифры следует умножить в 3-5 раз при самостоятельной сборке из отдельных фотоэлементов и в 6-10 раз при покупке готовых комплектов оборудования (плюс стоимость монтажа).

Из всех элементов системы энергоснабжения на фотоэлектрических батареях самый короткий срок службы имеют аккумуляторы, однако производители современных необслуживаемых аккумуляторов утверждают, что в так называемом буферном режиме они проработают порядка 10 лет (или отработают традиционные 1000 циклов сильной зарядки-разрядки — если считать по одному циклу в сутки, то в таком режиме их хватит на 3 года). Отмечу, что стоимость аккумуляторов обычно составляет лишь 10-20% от общей стоимости всей системы, а стоимость инверторов и контроллеров заряда (и то, и другое — сложные электронные изделия, и потому существует некоторая вероятность их выхода из строя) — ещё меньше. Таким образом, принимая во внимание длительный срок службы и возможность работы в течении долгого времени без какого-либо обслуживания, фотопреобразователи за свою жизнь вполне могут окупиться не один раз, и не только в отдалённых районах, но и в обжитых местностях — если тарифы на электричество продолжат расти нынешними темпами!

Солнечные тепловые коллекторы

Название «солнечные коллекторы» закрепилось за устройствами, использующими непосредственный нагрев солнечным теплом, — как одиночными, так и наращиваемыми (модульными). Простейший образец теплового солнечного коллектора — чёрный водяной бак на крыше вышеупомянутого дачного душа (кстати, эффективность нагрева воды в летнем душе можно заметно повысить, соорудив вокруг бака мини-парничок хотя бы из полиэтиленовой плёнки; желательно, чтобы между плёнкой и стенками бака сверху и сбоку оставался зазор в 4-5 см).

Однако современные коллекторы мало похожи на такой бак. Обычно они представляют собой плоские конструкции из тонких зачернённых трубок, уложенных в виде решётки или змейкой. Трубки могут крепиться на зачернённом же теплопроводящем листе-подложке, который улавливает солнечное тепло, попадающее в промежутки между ними — это позволяет уменьшить общую длину трубок без потери эффективности. Для снижения теплопотерь и повышения нагрева коллектор сверху может быть закрыт листом стекла или прозрачного сотового поликарбоната, а с обратной стороны теплораспределяющего листа бесполезные потери тепла предотвращает слой теплоизоляции — получается своеобразная «теплица». По трубке движется нагреваемая вода или другой теплоноситель, который может собираться в накопительном термоизолированном баке. Движение теплоносителя происходит под действием насоса или самотёком за счёт разности плотностей теплоносителя до и после теплового коллектора. В последнем случае для более-менее эффективной циркуляции требуется тщательный выбор уклонов и сечений труб и размещение самого коллектора как можно ниже. Но обычно коллектор размещается в тех же местах, где и солнечная батарея — на солнечной стене или на солнечном склоне крыши, правда дополнительно где-то надо разместить и накопительный бак. Без такого бака при интенсивном разборе тепла (скажем, если надо наполнить ванну или принять душ) ёмкости коллектора может не хватить, и через небольшое время из крана потечёт чуть подогретая водичка.

Защитное стекло, конечно, несколько снижает эффективность коллектора, поглощая и отражая несколько процентов солнечной энергии, даже если лучи падают перпендикулярно. Когда же лучи попадают на стекло под небольшим углом к поверхности, коэффициент отражения может приближаться к 100%. Поэтому при отсутствии ветра и необходимости лишь небольшого нагрева относительно окружающего воздуха (на 5-10 градусов, скажем, для полива огорода) «открытые» конструкции могут быть более эффективны, чем «остеклённые». Но как только требуется разность температур в несколько десятков градусов или если поднимается даже не очень сильный ветер, теплопотери открытых конструкций стремительно возрастают, и защитное стекло при всех своих недостатках становится необходимостью.

Важное замечание — необходимо учитывать, что в жаркий солнечный день при отсутствии разбора вода может перегреться выше температуры кипения, поэтому в конструкции коллектора необходимо принять соответствующие меры предосторожности (предусмотреть предохранительный клапан). В открытых коллекторах без защитного стекла такого перегрева обычно можно не опасаться.

В последнее время начинают широко использоваться солнечные коллекторы на так называемых тепловых трубках (не путать с «тепловыми трубками», применяемыми для отвода тепла в системах охлаждения компьютеров!). В отличие от рассмотренной выше конструкции, здесь каждая нагреваемая металлическая трубка, по которой циркулирует теплоноситель, впаяна внутрь стеклянной трубки, а из промежутка между ними откачан воздух. Получается аналог термоса, где за счёт вакуумной теплоизоляции теплопотери уменьшаются в 20 раз и более. В результате, по утверждению производителей, при морозе в -35°С снаружи стекла, вода во внутренней металлической трубке со специальным покрытием, поглощающим максимально широкий спектр солнечного излучения, нагревается до +50..+70°С (перепад более 100°С).Эффективное поглощение в сочетании с отличной теплоизоляцией позволяют нагревать теплоноситель даже в пасмурную погоду, хотя мощность нагрева, конечно, в разы меньше, чем при ярком солнце. Ключевым моментом здесь является обеспечение сохранности вакуума в зазоре между трубками, то есть вакуумной герметичности стыка стекла и металла, в очень широком диапазоне температур, достигающем 150°С, в течение всего срока эксплуатации, составляющего многие годы. По этой причине при изготовлении таких коллекторов не обойтись без тщательного согласования коэффициентов температурного расширения стекла и металла и высокотехнологичных производственных процессов, а значит, в кустарных условиях вряд ли удастся сделать полноценную вакуумную тепловую трубку. Но более простые конструкции коллекторов без проблем изготавливаются самостоятельно, хотя, конечно, их эффективность несколько меньше, особенно зимой.

Помимо описанных выше жидкостных солнечных коллекторов, существуют и другие интересные типы конструкций: воздушные (теплоноситель — воздух, и замерзание ему не страшно), «солнечные пруды» и пр. К сожалению, большинство исследований и разработок по солнечным коллекторам посвящено именно жидкостным моделям, поэтому альтернативные виды серийно практически не производятся и сведений о них не так уж много.

Достоинства солнечных коллекторов

Важнейшее достоинство солнечных коллекторов — простота и относительная дешевизна изготовления их вполне эффективных вариантов, сочетающаяся с неприхотливостью в эксплуатации. Необходимый минимум для того, чтобы сделать коллектор своими руками — это несколько метров тонкой трубы (желательно медной тонкостенной — её можно согнуть с минимальным радиусом) и немного чёрной краски, хотя бы битумного лака. Сгибаем трубку змейкой, красим чёрной краской, размещаем в солнечном месте, подключаем к водяной магистрали, — и вот простейший солнечный коллектор уже готов! При этом змеевику легко можно придать почти любую конфигурацию и максимально использовать всё выделенное для коллектора место. Наиболее эффективным зачернением, которое можно нанести в кустарных условиях и которое к тому же очень устойчиво к высоким температурам и прямому солнечному свету, является тонкий слой сажи. Однако сажа легко стирается и смывается, потому для такого зачернения обязательно потребуется защитное стекло и специальные меры, чтобы предотвратить возможное попадание конденсата на покрытую сажей поверхность.

Другое важнейшее достоинство коллекторов заключается в том, что в отличии от солнечных батарей, они способны уловить и преобразовать в тепло до 90% попавшего на них солнечного излучения, а в самых удачных случаях — и более. Поэтому не только в ясную погоду, но и при лёгкой облачности КПД коллекторов превосходит КПД фотоэлектрических батарей. Наконец, в отличие от фотоэлектрических батарей, неравномерность засветки поверхности не вызывает непропорционального снижения эффективности коллектора — важен лишь общий (интегральный) поток излучения.

Недостатки солнечных коллекторов

Зато солнечные коллекторы более чувствительны к погоде, чем солнечные батареи. Даже на ярком солнце свежий ветер способен во много раз снизить эффективность нагрева открытого теплообменника. Защитное стекло, конечно, резко сокращает потери тепла от ветра, но в случае плотной облачности и оно бессильно. В пасмурную ветреную погоду толку от коллектора практически нет, а солнечная батарея хоть немного энергии, да вырабатывает.

Среди других недостатков солнечных коллекторов прежде всего выделю их сезонность. Достаточно коротких весенних или осенних ночных заморозков, чтобы образовавшийся в трубах нагревателя лёд создал опасность их разрыва. Конечно, это можно исключить, подогревая холодными ночами «тепличку» со змеевиком сторонним источником тепла, однако в таком случае общая энергетическая эффективность коллектора легко может стать отрицательной! Другой вариант — двухконтурный коллектор с антифризом во внешнем контуре — не потребует расхода энергии на подогрев, но будет намного сложнее одноконтурных вариантов с прямым нагревом воды как в изготовлении, так и при эксплуатации. Воздушные конструкции в принципе не могут замёрзнуть, но там есть другая проблема — низкая удельная теплоёмкость воздуха.

И всё же, пожалуй, главный недостаток солнечного коллектора заключается в том, что он является именно нагревательным прибором, причём хотя промышленно изготовленные образцы при отсутствии разбора тепла могут нагреть теплоноситель до 190..200°С, обычно достигаемая температура редко превышает 60..80°С. Поэтому использовать добытое тепло для получения существенных объёмов механической работы или электрической энергии весьма затруднительно. Ведь даже для работы самой низкотемпературной паро-водяной турбины (например той, которую в своё время описал В.А.Зысин) необходимо перегреть воду хотя бы до 110°С! А непосредственно в виде тепла энергия, как известно, долго не хранится, да и при температуре менее 100°С её обычно можно использовать лишь в горячем водоснабжении и отоплении дома. Впрочем, с учётом низкой стоимости и простоты изготовления это может быть вполне достаточной причиной для обзаведения собственным солнечным коллектором.

Справедливости ради нужно отметить, что «нормальный» рабочий цикл тепловой машины можно организовать и при температурах ниже 100°С — либо если температуру кипения понизить, снижая давление в испарительной части с помощью откачки оттуда пара, либо использовав жидкость, температура кипения которой лежит между температурой нагрева солнечного коллектора и температурой окружающего воздуха (оптимально — 50..60°С). Правда, я могу вспомнить лишь одну не экзотическую и относительно безопасную жидкость, более-менее удовлетворяющую этим условиям — это этиловый спирт, в нормальных условиях кипящий при 78°С. Очевидно, что в таком случае обязательно придётся организовывать замкнутый цикл, решая множество связанных с этим проблем. В некоторых ситуациях перспективным может быть применение двигателей с внешним нагревом (двигателей Стирлинга). Интересным в этом плане может быть и использование сплавов с эффектом памяти формы, о которых на этом сайте рассказано в статье И.В.Найгеля — им для работы достаточно температурного перепада всего в25-30°С.

Концентрация солнечной энергии

Повышение эффективности солнечного коллектора прежде всего заключается в устойчивом повышении температуры нагреваемой воды выше температуры кипения. Для этого обычно применяется концентрация солнечной энергии на коллекторе с помощью зеркал. Именно такой принцип лежит в основе большинства солнечных электростанций, различия заключаются лишь в количестве, конфигурации и размещении зеркал и коллектора, а также в методах управления зеркалами. В результате в точке фокусировки вполне возможно достижение температуры даже не в сотни, а в тысячи градусов, — при такой температуре уже может происходить прямое термическое разложение воды на водород и кислород (полученный водород можно сжигать ночью и в пасмурные дни)!

К сожалению, эффективная работа подобной установки невозможна без сложной системы управления зеркалами-концентраторами, которые должны отслеживать постоянно изменяющееся положение Солнца на небе. В противном случае уже через несколько минут точка фокусировки покинет коллектор, который в таких системах часто имеет весьма небольшие размеры, и нагрев рабочего тела прекратится. Даже использование зеркал-параболоидов решает проблему лишь частично — если их периодически не доворачивать вслед за Солнцем, то через несколько часов оно уже не будет попадать в их чашу или станет освещать лишь её край — толку от этого будет немного.

Самый простой способ концентрации солнечной энергии в «домашних» условиях — это горизонтально положить зеркало возле коллектора так, чтобы большую часть дня «солнечный зайчик» попадал на коллектор. Интересный вариант — использовать в качестве такого зеркала поверхность специально созданного возле дома водоёма, особенно если это будет не обычный водоём, а «солнечный пруд» (хотя сделать это непросто, а эффективность отражения будет гораздо меньше, чем у обычного зеркала). Хороший результат может дать создание системы вертикальных зеркал-концентраторов (эта затея обычно гораздо более хлопотная, но в некоторых случаях вполне оправданной может оказаться простая установка большого зеркала на соседней стене, если она образует с коллектором внутренний угол, — всё зависит от конфигурации и местоположения здания и коллектора).

Перенаправление солнечного излучения с помощью зеркал может повысить и выработку фотоэлектрической батареи. Но при этом возрастает её нагрев, а он может вывести батарею из строя. Поэтому в данном случае приходится ограничиваться относительно небольшим выигрышем (на несколько десятков процентов, но не в разы), и нужно тщательно контролировать температуру батареи, особенно в жаркие ясные дни! Именно из-за опасности перегрева некоторые производители фотоэлектрических батарей прямо запрещают эксплуатацию своих изделий при повышеной освещённости, созданной с помощью дополнительных отражателей.

Преобразование солнечной энергии в механическую

Традиционные типы солнечных установок не подразумевают непосредственного получения механической работы. К солнечной батарее на фотопреобразователях для этого надо подключить электродвигатель, а при использовании теплового солнечного коллектора перегретый пар (а для перегрева вряд ли удастся обойтись без зеркал-концентраторов) надо подать на вход паровой турбины или в цилиндры паровой машины. Коллекторы с относительно небольшим нагревом могут преобразовывать тепло в механическое движение более экзотическими способами, например с помощью актуаторов из сплавов с эффектом памяти формы .

Тем не менее, существуют и установки, предполагающее преобразование солнечного тепла в механическую работу, непосредственно заложенное в их конструкцию. Причём размеры и мощность их самые разные — это и проект огромной солнечной башни высотой в сотни метров, и скромный солнечный насос, которому самое место на дачном участке.

Сегодня достаточно остро стоит вопрос обеспечения человечества энергоресурсами. Все знают, что ученые давно бьются над поиском альтернативных источников. Печально, что за последние годы на бытовом уровне явного прорыва в этой отрасли не произошло. Нашим людям недоступны солнечные технологии. Человечество нашло много нетрадиционных способов получения энергии: геотермальные станции, волновые и приливные электростанции, гидроэлектростанции, ветряки, водородная и космическая энергетика, биотопливо и даже гроза. Это неполный список находок человечества.

Второе место альтернативной энергетики

Второе место после ветряков, по совокупности достоинств и недостатков заняла – энергия солнца. Бесконечный источник, который всегда оставался у нас перед глазами, правда эффективно использовать его мы пока не научились. На практике кремниевые батареи способны продемонстрировать не более 22% коэффициента полезного действия. Они покажут КПД на уровне 75-80%, но применяются только как отопительные элементы. Плоские вакуумные коллекторы более требовательны к условиям использования, вакуум тяжелей удержать в такой большой системе, чувствительной к деформациям корпуса.

Хотя нас больше всего интересует использование этого источника в отоплении. Многие не против обогреть свой дом за счёт природной энергии, а не за счёт кошелька. Тут нас и ожидает самое неприятное. Стоимость столь высока, что альтернатива перестает быть заманчивой.

Поэтому, предлагаю взглянуть на эту проблему, с привычной для нашего человека стороны. А именно посмотреть, как можно погреться, не выкладывая заоблачные суммы. Сложно теперь понять, кто первый придумал использовать пиво именно так, но воздушные коллекторы из пивных банок сейчас конструируют в Америке, Европе да и вообще по всему миру. Их оснащают термостатом, микроконтроллером и дополнительным наддувом. В вашем исполнении он будет нужного размера и гораздо меньшей стоимости. Хотя, если пить пиво специально, то в последнем я не уверен.

Панели своими руками

Устройства из алюминиевых банок

Для создания первой батареи не нужно быть опытным мастером. Энергию солнца вы все равно сможете поймать. Для этого понадобится некоторое количество пивных банок, несколько квадратных метров ДСП, приблизительно столько же утеплителя и силиконовый клей.

Торцы банок аккуратно вскрывают по рантику. При желании зачищают наружную поверхность для лучшей адгезии и склеивают трубы необходимой длины. После они вклеиваются рядами в короб, размеры которого мастеру подскажет фантазия и красятся в чёрный цвет. Желательно термостойкой краской.

Все внутренние поверхности утепляются. Советуем использовать экструдированный пенополистирол, впоследствии окрашенный чёрной краской. А с утеплителем экспериментируйте. Сами трубы, в итоге должны расположиться вертикально, а верхние и нижние торцы, соединиться между собой, как регистры батареи.

Коллектор из алюминиевых банок своими руками

Вверху и внизу делают патрубки подачи, приема воздуха, которые нужно будет завести в ваше жилище. На вход поставьте маленький кулер, а на горячий выход слегка модернизированный автомобильный термостат или применить другой способ терморегуляции. Практика доказывает, что он может стать неплохим подспорьем для вашей отопительной системы. Главное – это качественная, герметичная сборка и расположение батареи. С лицевой, закройте короб стеклом, а лучше поликарбонатом. По расчётам специалистов, необходимо 15 квадратных метров коллекторов, для обогрева дома размером в 100 квадратов. Подобная чудо-альтернатива значительно уступит промышленным образцам, но всё же…

Параболо – концентрический зеркальный концентратор

В Европе их используют, ограничиваясь всего лишь перфорированной поверхностью алюминиевых сплавов.

Стоимость таких обогревателей велика из-за больших размеров и дорогих материалов. Поэтому рассматривать самодельные плоские теплообменники не стоит. Следующий вариант заинтересует загородных жителей. Отличие его радикально практически во всём. По сути, это параболо-концентрический зеркальный концентратор энергии солнца. Но главная выгода, заключается в применяемых материалах. Концентратор – это выгнутое в одной плоскости зеркало, концентрирующее лучи солнца в определённой точке. Здесь применяются три хитрости.



Материал зеркала, размер отражающей поверхности и тепловой аккумулятор. Пугающее изогнутое зеркало, оказывается изготовлено из зеркальной пленки. Зеркальная пленка наклеивается на вогнутую в виде желоба поверхность. Основанием для зеркала, стоит выбрать тот же пресловутый пенополистирол.



А в качестве несущих конструкций, выступят различные материалы: от древесины до металла. Изготовляется необходимое количество зеркальных сегментов, которые крепятся на несущие каркасы.



В каком-то смысле, вся конструкция напоминает детские качели, где вместо сиденья выступают зеркала, а на оси располагается трубопровод – теплообменник. Поскольку это загородное решение, размеры здесь могут быть внушительные.

Солнечный концентратор из спутниковой тарелки

Водные солнцеуловители

Ряд подобных устройств располагается вдоль движения солнца. Зеркало фокусируется в одну линию, откуда теплоноситель и заберёт питание. Теплоносителем будет обыкновенная вода, которая бежит по тонкостенным трубам, идущим в несколько рядов. Используйте нержавеющие или обычные тонкостенные стальные трубы нужного диаметра. При таком серьёзном подходе в этой системе не обойтись, без габаритного аккумулятора тепла.


Здесь существуют готовые решения, но и полёт фантазии приветствуется. К примеру, – “бассейн” на несколько кубов, изготовленный из пенопласта и деревянных опор. Внутренняя поверхность выстилается плотной тепличной пленкой. А прочность бортов рассчитывают на удержание нескольких кубов воды. Из подобных материалов устраивают и крышу закрывающую этот мини бассейн, в форме пирамиды.

Подобная простота конструкции в купе с незамысловатыми материалами, обеспечивают высокую ремонтопригодность. И замену отслуживших свой срок деталей. Стоимость тоже будет значительно отличаться. Разместить такое хранилище тепла лучше на открытом пространстве, это обеспечит легкий доступ в случае необходимости.

Зеркало на несущий конструкции, должно иметь возможность поворота по вертикали. В этом случае концентратор следит за светилом круглый год. Трубопровод включается в общую систему отопления для экономии средства.

Солнечный вакуумный коллектор

Далее ставки начинают повышаться. Речь к сожалению идёт о цене. Стоимость их довольно высока, хотя и КПД тоже достаточно большой. Его невозможно сделать самому, потому что в производстве используется высокопрочное боросиликатное стекло с пониженным содержанием металла.

Для контроля за вакуумом используется бариевый газопоглотитель. Если герметичность не нарушена, то трубка имеет серебристый цвет, если же она побелела, значит нарушена целостность. Вакуумные коллекторы менее остальных зависят от погодных условий, поскольку тепловой канал отделен от атмосферы вакуумом. А вакуум как известно, отличный теплоизолятор. В плохую погоду они поглощают инфракрасное излучение, проходящее сквозь облака. Ещё один плюс в пользу такой технологии.

Виды вакуумных коллекторов

Их существует несколько, некоторые из них более удачной конструкции, но они дороже. Самым удачным считается коллектор с перьевой трубкой и прямоточным тепловым каналом. Принцип устройства во всех случаях приблизительно одинаков. Колба представляет собой вытянутый, тонкий термос, с вакуумом между его стенками. На внутреннее стекло наносится высокоабсорбирующее покрытие, а внутри помещается тепловая трубка с теплоносителем.

Теплоносители принципиально отличаются. В одном случае, это легко испаряющаяся жидкость, перенос тепла происходит посредством испарения и конденсации. С прямоточным каналом, теплоноситель протекает по каждой из тепловых трубок, перенося и отдавая энергию. Основной недостаток – высокая цена и сложность в ремонте. В случае ремонта некоторых вакуумных коллекторов, из гелиосистемы придётся сливать теплоноситель. Разница кпд в зависимости от производителя бывает довольно значительной и может быть даже двукратной.

С вакуумными трубками собрать систему проще, поскольку основной элемент готов. Остаётся обеспечить контакт медного поглотителя с теплоносителем всей системы, а батареи из вакуумных трубок в безопасном кожухе поместить на освещённое место. Конечно сборку и монтаж большой системы лучше доверить специалистам. Гелиосистема с такими элементами часто перегревается и закипает и за ней нужен определённый контроль. Если ваше основное отопление имеет большой литраж и перегрева не будет, вспомогательный модуль попробуйте собрать самому.

Делим их на три вида:

  • на основе моно-элементов
  • на основе поли-элементов
  • аморфные они же – плёночные. К ним также относят панели на основе теллурида кадмия, на основе селенида меди-индия и полимерные.

Здесь есть свои плюсы и минусы. Плюс в том, что на выходе мы получаем электричество, применение которого очень широко. Поликристаллические панели, имеют средний коэффициент полезного действия 12-18%, дешевле в изготовлении. Монопанели напротив, дороже и имеют выше КПД – 18-22%. Аморфные панели имеют самый низкий кпд 5-6 % но демонстрируют ряд преимуществ. Оптическое поглощения в 15- 20 раз выше, чем у поли и монокристаллов. Толщина меньше 1 мкм. Имеет хорошую производительность при пасмурной погоде, высокую гибкость. Применяют полимерные батареи там, где наибольшее значение имеет эластичность и экологичность. Дополнительно к панелям потребуются системы заряда, трансформации напряжений, распределители питания. Это и инверторы, аккумуляторы, контроллеры. Кремниевые элементы, чувствительны к загрязнениям, а при высоких температурах может потребоваться система охлаждения, хотя современные конструкции предусматривают это.

Совсем недавно австралийские учёные умудрились установить рекорд в 35% эффективности, принципиально новой разработкой в этой области. Хотя французы заявляют о разработке модулей с КПД в 46%, компаниями Soitec, CEA-Leti и Институтом Фраунгофера. Но простым смертным такого долго не видать. Кроме этого есть у кремниевых батарей ещё недостатки. В Америке применение таких панелей началось в шестидесятых годах, но наши умельцы похоже ещё долго будут мастерить подобия из дешёвых аналогов с востока. Всё-таки слишком ценный способ экономить для простого человека. Хотя, очень привлекательно получить определённую автономность в электропитании.

Также есть новации в отрасли автомобилестроения, авиации, кораблестроения. Выставочные, единичные или экспериментальные экземпляры существуют, но пока что, это остаётся роскошью. Порой, из прошлого возникает хорошо забытое старое, например освещение, с помощью световых колодцев. Способ знакомый еще со времен седых пирамид.

Некоторые хотят воплотить в жизнь идею солнечных дорог. Появились прозрачные элементы и самолёт, способный облететь землю на световом парусе. Германия поставила рекорд по количеству получаемой энергии в день, а в Индии целый аэродром перешёл на питание природным ресурсом. Наверняка близок тот день, когда технологии позволят нам брать от солнца ровно столько, сколько нам нужно.

Принцип преобразования солнечной энергии, её применение и перспективы

В мире всё меньше традиционных источников энергии. Запасы нефти, газа, угля истощаются и всё идёт к тому, что рано или поздно они закончатся. Если к этому времени не найти альтернативных источников энергии, то человечество ждёт катастрофа. Поэтому во всех развитых странах ведутся исследования по открытию и разработке новых источников энергии. В первую очередь – это солнечная энергия. С древних времён эта энергию использовалась людьми для освещения жилища, сушки продуктов, одежды и т. п. Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, позволяющих преобразовывать энергию солнца в электрическую или тепловую. Отрасль постепенно растёт и развивается, но, как и везде, есть свои проблемы. Обо всём этом речь пойдёт в настоящем материале.

Энергия солнца является одним из самых доступных возобновляемых источников на Земле. Использование солнечной энергии в народном хозяйстве положительно сказывается на состоянии окружающей среды, поскольку для её получения не требуется бурить скважины или разрабатывать шахты. К тому же, этот вид энергии свободный и не стоит ничего. Естественно, что требуются затраты на покупку и монтаж оборудования.

Проблема в том, что солнце – это прерывистый источник энергии. Так, что требуется накопление энергии и использование её в связке с другими энергетическими источниками. Основная проблема на сегодняшний день заключается в том, что современное оборудование имеет низкую эффективность преобразования энергии солнца в электрическую и тепловую. Поэтому все разработки направлены на то, чтобы увеличить КПД таких систем и снизить их стоимость.

Кстати, очень много ресурсов на планете представляют собой производные от солнечной энергии. К примеру, ветер, который является ещё одним возобновляемым источников, не дул бы без солнца. Испарение воды и накопление её в реках также происходит под действием солнца. А вода, как известно, используется гидроэнергетике. Биотоплива также не было бы без солнца. Поэтому, помимо прямого источника энергии, солнце влияет на другие сферы энергетики.

Солнце отправляет к поверхности нашей планеты радиацию. Из широкого спектра излучения поверхности Земли достигают 3 типа волн:

  • Световые. В спектре излучения их примерно 49 процентов;
  • Инфракрасные. Их доля также 49 процентов. Благодаря этим волнам наша планета нагревается;
  • Ультрафиолетовые. В спектре солнечного излучения их примерно 2 процента. Они невидимы для нашего глаза.

Экскурс в историю

Как развивалась солнечная энергетика до наших дней? Об использовании солнца в своей деятельности человек думал с древних времён. Всем известна легенда, согласно которой Архимед сжёг флот неприятеля у своего города Сиракузы. Он использовал для этого зажигательные зеркала. Несколько тысяч лет назад на Ближнем востоке дворцы правителей отапливали водой, которая нагревалась солнцем. В некоторых странах выпариваем морской воды на солнце получали соль. Учёные часто проводили опыты с нагревательными аппаратами, работающими от солнечной энергии.

Первые модели таких нагревателей были выпущены в XVII─XVII веках. В частности, исследователь Н. Соссюр представил свою версию водонагревателя. Он представляет собой ящик из дерева, накрытый стеклянной крышкой. Вода в этом устройстве подогревалась до 88 градусов Цельсия. В 1774 году А. Лавуазье использовал линзы для концентрации тепла от солнца. И также появились линзы, позволяющие локально расплавить чугун за несколько секунд.

Батареи, преобразующие энергию солнца в механическую, создали французские учёные. В конце XIX века исследователь О. Мушо разработал инсолятор, фокусирующий лучи с помощью линзы на паровом котле. Этот котёл использовался для работы печатной машины. В США в то время удалось создать агрегат, работающий от солнца, мощностью в 15 «лошадей».



Долгое время инсоляторы выпускались по схеме, использующей энергию солнца для превращения воды в пар. И преобразованная энергия использовалась для совершения какой-либо работы. Первое устройство, преобразующее солнечную энергию в электрическую, было создано в 1953 году в США. Оно стало прообразом современных солнечных батарей. Фотоэлектрический эффект, на котором основана их работа, был открыт ещё в 70-е годы XIX столетия.

В тридцатые годы прошлого столетия академик СССР А. Ф. Иоффе предложил использовать полупроводниковые фотоэлементы для преобразования энергии солнца. КПД батарей в то время был менее 1%. Прошло много лет до того, как были разработаны фотоэлементы, имеющие КПД на уровне 10─15 процентов. Затем американцы построили солнечные батареи современного типа.

Для получения большей мощности солнечных систем низкий КПД компенсируется увеличенной площадью фотоэлементов. Но это не выход, поскольку кремниевые полупроводники в фотоэлементах довольно дорогие. При увеличении КПД возрастает стоимость материалов. Это является главным препятствием для массового использования солнечных батарей. Но по мере истощения ресурсов их использование будет всё более выгодным. Кроме того, исследования по увеличению КПД фотоэлементов не прекращаются.

Стоит сказать, что батареи на основе полупроводников достаточно долговечны и не требуют квалификации для ухода за ними. Поэтому их чаще всего используют в быту. Есть также целые солнечные электростанции. Как правило, они создаются в странах с большим числом солнечных дней в году. Это Израиль, Саудовская Аравия, юг США, Индия, Испания. Сейчас есть и совсем фантастические проекты. Например, солнечные электростанции вне атмосферы. Там солнечный свет ещё не потерял энергию. То есть, излучение предлагается улавливать на орбите и затем переводить в микроволны. Затем в таком виде энергия будет отправляться на Землю.

Преобразование солнечной энергии

Прежде всего, стоит сказать о том, в чём можно выразить и оценить солнечную энергию.

Как можно оценить величину солнечной энергии?

Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.



Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.

Способы преобразования

Поскольку наука на сегодняшний день не имеет устройств, работающих на энергии солнца в чистом виде, её требуется преобразовать в другой тип. Для этого были созданы такие устройства, как солнечные батареи и коллектор. Батареи преобразуют солнечную энергию в электрическую. А коллектор вырабатывает тепловую энергию. Есть также модели, совмещающие эти два вида. Они называются гибридными.




Основные способы преобразования энергии солнца представлены ниже:
  • фотоэлектрический;
  • гелиотермальный;
  • термовоздушный;
  • солнечные аэростатные электростанции.

Первый способ самый распространённый. Здесь используются фотоэлектрические панели, которые под воздействием солнца вырабатывают электрическую энергию. В большинстве случаев их делают из кремния. Толщина таких панелей составляет десятые доли миллиметра. Такие панели объединяются в фотоэлектрические модули (батареи) и устанавливаются на солнце. Чаще всего их ставят на крышах домов. В принципе, ничто не мешает разместить их на земле. Нужно, только чтобы вокруг них не было крупных предметов, других зданий и деревьев, которые могут отбрасывать тень.

Кроме фотоэлементов, для получения электрической энергии применяются тонкопленочные или . Их преимуществом является малая толщина, а недостатком – сниженный КПД. Такие модели часто используются в портативных зарядках для различных гаджетов.

Термовоздушный способ преобразования подразумевает получение энергию потока воздуха. Этот поток направляется на турбогенератор. В аэростатных электростанциях под действием солнечной энергии в аэростатном баллоне генерируется водяной пар. Поверхность аэростата покрывается специальным покрытием, поглощающим солнечные лучи. Такие электростанции способны работать в пасмурную погоду и в тёмное время суток благодаря запасу пара в аэростате.

Гелиотремальная энергетика основана на нагреве поверхности энергоносителя в специальном коллекторе. Например, это может быть нагрев воды для системы отопления дома. В качестве теплоносителя может использоваться не только вода, но и воздух. Он может нагреваться в коллекторе и подаваться в систему вентиляции дома.

Все эти системы стоят достаточно дорого, но их освоение и совершенствование постепенно продолжается.

Преимущества и недостатки солнечной энергии

Преимущества

  • Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
  • Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
  • Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
  • Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
  • Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
  • Хорошо адаптированы для использования в частных домах;
  • Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
  • Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.