Потенциальная и кинетическая энергия. Закон сохранения механической энергии. Кинетическая энергия и ее изменение — Гипермаркет знаний

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F , действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона F =mdv /dt

и умножая обе части равенства на перемещение dr , получим

F dr =m(dv /dt)dr=dA

Таким образом, тело массой т, движущееся со скоростью v, обладает кинетической энергией

Т = т v 2 /2. (12.1)

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать законы Ньютона. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия - механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является сила трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элементарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

F dr =-dП. (12.3)

Следовательно, если известна функция П(r ), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С - постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной постоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энергию тела в каком-то определенном положении считают равной нулю (выбирают нулевой уровень отсчета), а энергию тела в других положениях отсчитывают относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k - единичные векторы координатных осей). Вектор, определяемый выражением (12.5), называется градиентом скаляра П.

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называемый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h"), П= - mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:

F х упр = -kx,

где F x упр - проекция силы упругости на ось х; k - коэффициент упругости (для пружины - жесткость), а знак минус указывает, что F x упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, деформирующая сила равна по модулю силе упругости и противоположно ей направлена, т. е.

F x =-F x упр =kx Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

dA = F x dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx 2 /2.

Потенциальная энергия системы, подобно кинетической энергии, является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

Полная механическая энергия системы - энергия механического движения и взаимодействия:

т. е. равна сумме кинетической и потенциальной энергий.

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ , энергия, которой обладает движущийся предмет. Получает ее, начав двигаться. Зависит от массы () предмета и его скорости (v ), согласно равенству: К. э. = 1/2mv 2 . При ударе преобразуется в другую форму энергии, такую как тепловая, звуковая или световая. см. также ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ .

Кинетическая энергия. Движущийся грузовик обладает кинетической энергией (А). Для того, чтобы увеличить его скорость, ему нужно сообщить дополнительную энергию, достаточную для преодоления трения и сопротивления воздуха, и увеличения скорости. Для того, чтобы понизить кинетическую энергию грузовика, необходимую для того чтобы кинетическая энергия была преобразована в тепловую энергию тормозов и шин (В), Кинетическая энергия нагруженного грузовика, двигающегося с такой же скоростью, будет больше из-за большей массы (С) и ему понадобится больше тормозной силы, чтобы растратить кине тическую энергию и остановиться на том же расстоянии, что и ненагруженный грузовик.


Научно-технический энциклопедический словарь .

В предыдущем параграфе было выяснено, что когда тела, взаимодействующие друг с другом силой упругости или силой тяжести, совершают работу, то изменяется взаимное расположение тел или их частей. А когда работу совершает движущееся тело, то изменяется его скорость. Но при совершении работы изменяется энергия тел. Отсюда можно заключить, что энергия тел, взаимодействующих силой упругости или силой тяжести, зависит от взаимного расположения этих тел или их частей. Энергия же движущегося тела зависит от его скорости.

Энергию тел, которой они обладают вследствие взаимодействия друг с другом, называют потенциальной энергией. Энергию же тел, которой они обладают вследствие своего движения, называют кинетической энергией.

Следовательно, энергия, которой обладает Земля и находящееся вблизи нее тело, - это потенциальная энергия системы Земля - тело. Для краткости принято говорить, что этой энергией обладает само тело, находящееся вблизи поверхности Земли.

Энергия деформированной пружины - это тоже потенциальная энергия. Она определяется взаимным расположением витков пружины.

Кинетическая энергия - это энергия движения. Кинетической энергией может обладать тело и не взаимодействующее с другими телами.

Тела могут обладать одновременно и потенциальной, и кинетической энергией. Например, искусственный спутник Земли обладает кинетической энергией, потому что он движется, и потенциальной энергией, потому что он взаимодействует силой всемирного тяготения с Землей. Падающий груз тоже обладает и кинетической, и потенциальной энергией.

Посмотрим теперь, как можно вычислить энергию, которой обладает тело в данном состоянии, а не только ее изменение. Для этой цели нужно из различных состояний тела или системы тел выбрать одно определенное состояние, с которым будут сравниваться все остальные.

Назовем это состояние «нулевым состоянием». Тогда энергия тел в любом состоянии будет равна работе, которая совершается

при переходе из этого состояния в пулевое состояние. (Очевидно, что в нулевом состоянии энергия тела равна пулю.) Напомним, что работа, совершаемая силон тяжести и силой упругости, не зависит от траектории движения тела. Она зависит только от его начального и конечного положений. Точно так же работа, совершаемая при изменении скорости тела, зависит только от начальной и конечной скорости тела.

Какое состояние тел выбрать за нулевое, безразлично. Но в некоторых случаях выбор нулевого состояния напрашивается сам собой. Например, когда речь идет о потенциальной энергии упруго деформированной пружины, естественно считать, что недеформированная пружина находится в нулевом состоянии. Энергия недеформированной пружины равна нулю. Тогда потенциальная энергия деформированной пружины будет равна той работе, которую совершила бы эта пружина, перейдя в недеформпрованноесостояние. Когда нас интересует кинетическая энергия движущегося тела, естественно принять за нулевое то состояние тела, в котором его скорость равна нулю. Кинетическую энергию движущегося тела мы получим, если вычислим работу, которую оно совершило бы, двигаясь до полной остановки.

Иное дело, когда речь идет о потенциальной энергии тела, поднятого на некоторую высоту над Землей. Эта энергия зависит, конечно, от высоты поднятия тела. Но тут нет «естественного» выбора нулевого состояния, т. е. того положения тела, от которого нужно отсчитывать его высоту. Можно выбрать за нулевое то состояние тела, когда оно находится на полу комнаты, на уровне моря, на дне шахты и т. д. Необходимо лишь при определении энергии тела на разных высотах отсчитывать эти высоты от одного и того же уровня, высота которого принята равной нулю. Тогда значение потенциальной энергии тела на данной высоте будет равно работе, которая была бы совершена при переходе тела с этой высоты на нулевой уровень.

Выходит, что в зависимости от выбора нулевого состояния энергия одного и того же тела имеет разные значения! В этом нет никакой беды. Ведь для вычисления работы, совершаемой телом, нам нужно знать изменение энергии, т. е. разность двух значений энергии. А эта разность никак не зависит от выбора нулевого уровня. Например, для того чтобы определить, на сколько вершина одной горы выше другой, безразлично, откуда отсчитывается высота каждой вершины. Важно лишь, чтобы она отсчитывалась от одного и того же уровня (например, от уровня моря).

Изменение как кинетической, так и потенциальной энергии тел всегда равно по абсолютной величине работе, совершенной действующими на эти тела силами. Но между обоими видами энергии имеется важное различие. Изменение кинетической энергии тела при действии на него силы действительно равно совершенной этой силой работе, т. е. совпадает с ней как по абсолютной величине, так и по знаку. Это непосредственно следует из теоремы о

кинетической энергии (см. § 76). Изменение же потепцналыюй энергии тел равно работе, совершенной силами взаимодействия, только по абсолютной величине, а по знаку противоположно ей. В самом деле, когда тело, на которое действует сила тяжести, перемещается вниз, совершается положительная работа, а потенциальная энергия тела при этом уменьшается. То же относится к деформированной пружине: при сокращении растянутой пружины сила упругости совершает положительную работу, а потенциальная энергия пружины уменьшается. Напомним, что изменение величины - это разность между последующим и предшествующим значением этой величины. Поэтому, когда изменение какой-нибудь величины состоит в том, что она увеличивается, это изменение имеет положительный знак. Наоборот, если величина уменьшается, ее изменение отрицательно.

Упражнение 54

1. В каких случаях тело обладает потенциальной энергией?

2. В каких случаях тело обладает кинетической энергией?

3. Какой энергией обладает свободно падающее тело?

4. Как изменяется потенциальная энергия тела, на которое действует сила тяжести, при его движении вниз?

5. Как изменится потенциальная энергия тела, на которое действует сила упругости или сила тяжести, если, пройдя по любой траектории, тело вернется в исходную точку?

6. Как связана работа, совершаемая пружиной, с изменением ее потенциальной энергии?

7. Как изменяется потенциальная энергия пружины, когда недеформированную пружину растягивают? Сжимают?

8. Шарик подвешен к пружине и совершает колебания. Как изменяется потенциальная энергия пружины при ее движении вверх и вниз?

Окружающий мир пребывает в постоянном движении. Любое тело (объект) способно выполнить определенную работу, даже если оно в состоянии покоя. Но для совершения любого процесса требуется приложить некоторые усилия , порой немалые.

В переводе с греческого языка этот термин означает «деятельность», «сила», «мощь». Все процессы на Земле и за пределами нашей планеты происходят благодаря этой силе, которой обладают окружающие объекты, тела, предметы.

Вконтакте

Среди большого разнообразия выделяют несколько основных видов данной силы, отличающихся прежде всего своими источниками:

  • механическая – данный вид характерен для движущихся в вертикальной, горизонтальной или другой плоскости тел;
  • тепловая – выделяется в результате неупорядоченного молекул в веществах;
  • – источником этого вида является движение заряженных частиц в проводниках и полупроводниках;
  • световая – переносчиком ее являются частицы света – фотоны;
  • ядерная – возникает вследствие самопроизвольного цепного деления ядер атомов тяжелых элементов.

В этой статье пойдет речь о том, что собой представляет механическая сила предметов, из чего она состоит, от чего зависит и как преобразуется во время различных процессов.

Благодаря этому виду предметы, тела могут находиться в движении либо в состоянии покоя. Возможность такой деятельности объясняется присутствием двух основных составляющих:

  • кинетической (Ек);
  • потенциальной (Еп).

Именно сумма кинетической и потенциальной энергий определяет общий численный показатель всей системы. Теперь о том, какие формулы используются для расчетов каждой из них, и в чем измеряется энергия.

Как рассчитать энергию

Кинетическая энергия – это характеристика любой системы, которая находится в движении . Но как найти кинетическую энергию?

Сделать это несложно, так как расчетная формула кинетической энергии весьма проста:

Конкретное значение определяется двумя основными параметрами: скоростью перемещения тела (V) и его массой (m). Чем больше данные характеристики, тем большей значением описываемого явления обладает система.

Но если объектом не совершаются перемещения (т.е. v = 0), то и кинетическая энергия равна нулю.

Потенциальная энергияэто характеристика, зависящая от положения и координат тел .

Любое тело подвержено земному притяжению и воздействию сил упругости. Такое взаимодействие объектов между собой наблюдается повсеместно, поэтому тела находятся в постоянном движении, меняют свои координаты.

Установлено, чем выше от поверхности земли находится предмет, чем больше его масса, тем большим показателем данной величины оно обладает .

Таким образом, зависит потенциальная энергия от массы (m) , высоты (h). Величина g – ускорение свободного падения, равное 9,81 м/сек2. Функция расчета ее количественного значения выглядит так:

Единицей измерения этой физической величины в системе СИ считается джоуль (1 Дж) . Именно столько нужно затратить сил, чтобы переместить тело на 1 метр, приложив при этом усилие в 1 ньютон.

Важно! Джоуль как единица измерения утвержден на Международном конгрессе электриков, который проходил в 1889 году. До этого времени эталоном измерения была Британская термическая единица BTU, используемая в настоящее время для определения мощности тепловых установок.

Основы сохранения и превращения

Из основ физики известно, что суммарная сила любого объекта, независимо от времени и места его пребывания, всегда остается величиной постоянной, преобразуются лишь ее постоянные составляющие (Еп) и (Ек).

Переход потенциальной энергии в кинетическую и обратно происходит при определенных условиях.

Например, если предмет не перемещается, то его кинетическая энергия равна нулю, в его состоянии будет присутствовать только потенциальная составляющая.

И наоборот, чему равна потенциальная энергия объекта, например, когда он находится на поверхности (h=0)? Конечно, она нулевая, а Е тела будет состоять только из ее составляющей Ек.

Но потенциальная энергия – это мощность движения . Стоит только системе приподняться на какую- то высоту, после чего его Еп сразу начнет увеличиваться, а Ек на такую величину, соответственно, уменьшаться. Эта закономерность просматривается в вышеуказанных формулах (1) и (2).

Для наглядности приведем пример с камнем либо мячом, которые подбрасывают. В процессе полета каждый из них обладает и как потенциальной, так и кинетической составляющей. Если одна увеличивается, то другая на такую же величину уменьшается.

Полет предметов вверх продолжается лишь до тех пор, пока хватит запаса и сил у составляющей движения Ек. Как только она иссякла, начинается падение.

А вот чему равна потенциальная энергия предметов в самой верхней точке, догадаться нетрудно, она максимальная .

При их падении происходит все наоборот. При касании с землей уровень кинетической энергии равен максимуму.

Потенциальная и кинетическая энергия позволяют охарактеризовать состояние любого тела. Если первая применяется в системах взаимодействующих объектов, то вторая связана с их движением. Эти виды энергии, как правило, рассматриваются тогда, когда сила, связывающая тела, независима от траектории движения. При этом важны только начальное и конечное их положения.

Общие сведения и понятия

Кинетическая энергия системы является одной из важнейших ее характеристик. Физики выделяют два вида такой энергии в зависимости от вида движения:

Поступательная;

Вращения.

Кинетическая энергия (Е к) представляет собой разность между полной энергией системы и энергией покоя. Исходя из этого, можно сказать, что она обусловлена движением системы. Тело имеет ее только тогда, когда оно движется. В состоянии покоя объекта она равняется нулю. Кинетическая энергия любых тел зависит исключительно от скорости движения и их масс. Полная энергия системы находится в прямой зависимости от скорости ее объектов и расстояния между ними.

Основные формулы

В том случае, когда любая сила (F) действует на тело, находящееся в покое так, что оно приходит в движение, можно говорить о совершении работы dA. При этом величина этой энергии dE будет тем выше, чем больше совершается работы. В этом случае верно такое равенство: dA = dE.

С учетом пути, пройденного телом (dR) и его скорости (dU), можно воспользоваться 2 законом Ньютона, исходя из которого: F = (dU/dE)*m.

Вышеуказанный закон используется только тогда, когда имеется инерциальная система отсчета. Существует еще один важный нюанс, учитываемый при расчетах. На значение энергии влияет выбор системы. Так, согласно системе СИ, она измеряется в джоулях (Дж). Кинетическая энергия тела характеризуется массой m, а также скоростью перемещения υ. В этом случае она составит: E k = ((υ*υ)*m)/2.

Исходя из вышеуказанной формулы, можно сделать вывод, что кинетическую энергию определяют массой и скоростью. Иными словами, она представляет собой функцию движения тела.

Энергия в механической системе

Кинетическая энергия представляет собой энергию механической системы. Она зависит от скорости движения ее точек. Данная энергия любой материальной точки представляется такой формулой: E = 1/2mυ 2, где m - масса точки, а υ - ее скорость.

Кинетическая энергия механической системы являет собой арифметическую сумму таких же энергий всех ее точек. Ее также можно выразить следующей формулой: E k = 1/2Mυ c2 + Ec, где υc — скорость центра масс, М - масса системы, Ec - кинетическая энергия системы при движении вокруг центра масс.

Энергия твердого тела

Кинетическая энергия тела, которое движется поступательно, определяется как и такая же энергия точки с массой, равной массе всего тела. Для расчета показателей при перемещении применяются более сложные формулы. Изменение этой энергии системы в момент ее перемещения из одного положения в другое происходит под воздействием приложенных внутренних и внешних сил. Оно равняется сумме работ Aue и A"u данных сил при этом перемещении: E2 - E1 = ∑u Aue + ∑u A"u.

Данное равенство отражает теорему, касающуюся изменения кинетической энергии. С ее помощью решаются самые разные задачи механики. Без этой формулы невозможно решить целый ряд важнейших задач.

Кинетическая энергия при высоких скоростях

Если скорости тела близки к скорости света, кинетическую энергию материальной точки можно рассчитать по следующей формуле:

E = m0c2/√1-υ2/c2 - m0c2,

где с - скорость света в вакууме, m0 - масса точки, m0с2 - энергия точки. При маленькой скорости (υ

Энергия при вращении системы

Во время вращения тела вокруг оси каждый его элементарный объем массой (mi) описывает окружность радиусом ri. В этот момент объем имеет линейную скорость υi. Поскольку рассматривается твердое тело, угловая скорость вращения всех объемов будет одинакова: ω = υ1/r1 = υ2/r2 = … = υn/rn (1).

Кинетическая энергия вращения твердого тела представляет собой сумму всех таких же энергий его элементарных объемов: E = m1υ1 2/2 + miυi 2/2 + … + mnυn 2/2 (2).

При использовании выражения (1), получаем формулу: E = Jz ω 2/2, где Jz - это момент инерции тела вокруг оси Z.

При сравнении всех формул становится ясно, что момент инерции - это и есть мера инертности тела во время вращательного движения. Формула (2) подходит для объектов, вращающихся относительно неподвижной оси.

Плоское движение тела

Кинетическая энергия тела, движущегося вниз по плоскости, складывается из энергии вращения и поступательного движения: E = mυc2/2 + Jz ω 2/2, где m - масса движущегося тела, Jz - момент инерции тела вокруг оси, υc - скорость центра масс, ω - угловая скорость.

Изменение энергии в механической системе

Изменение значения кинетической энергии тесно связано с потенциальной. Суть этого явления можно понять благодаря закону сохранения энергии в системе. Сумма E + dP во время перемещения тела всегда будет одинаковой. Изменение значения E всегда происходит одновременно с изменением dP. Таким образом, они преобразуются, словно перетекая друг в друга. Такое явление можно встретить практически во всех механических системах.

Взаимосвязь энергий

Потенциальная и кинетическая энергии тесно связаны между собой. Их сумму можно представить как полную энергию системы. На молекулярном уровне - это внутренняя энергия тела. Она присутствует постоянно, пока существует хотя бы какое-то взаимодействие между телами и тепловое движение.

Выбор системы отсчета

Для проведения вычисления значения энергии выбирают произвольный момент (его считают начальным) и систему отсчета. Определить точную величину потенциальной энергии возможно только в зоне воздействия сил, которые не зависят от траектории движения тела при совершении работы. В физике данные силы называют консервативными. Они имеют постоянную связь с законом сохранения энергии.

Суть разницы между потенциальной и кинетической энергией

Если внешнее воздействие минимально или сводится к нулю, изучаемая система всегда будет тяготеть к состоянию, в котором ее потенциальная энергия также будет стремиться к нулю. Например, подброшенный вверх мячик достигнет предела этой энергии в верхней точке траектории движения и в тот же момент начнет падать вниз. В это время накопленная в полете энергия преобразуется в движение (выполняемую работу). Для потенциальной энергии в любом случае существует взаимодействие как минимум двух тел (в примере с мячиком гравитация планеты оказывает на него влияние). Кинетическую энергию можно рассчитать индивидуально для любого движущегося тела.

Взаимосвязь разных энергий

Потенциальная и кинетическая энергия изменяются исключительно при взаимодействии тел, когда действующая на тела сила совершает работу, значение которой отлично от нуля. В замкнутой системе работа силы тяготения или упругости равняется изменению потенциальной энергии объектов со знаком «-»: A = - (Ep2 - Ep1).

Работа силы тяготения или упругости равняется изменению энергии: A = Ek2 - Ek1.

Из сравнения обоих равенств ясно, что изменение энергии объектов в замкнутой системе равняется изменению потенциальной энергии и противоположно ему по знаку: Ek2 - Ek1 = - (Ep2 - Ep1), или иначе: Ek1 + Ep1 = Ek2 + Ep2.

Из указанного равенства видно, что сумма этих двух энергий тел в замкнутой механической системе и взаимодействующих силами упругости и тяготения, всегда остается постоянной. Исходя из вышеизложенного, можно сделать вывод о том, что в процессе изучения механической системы следует рассматривать взаимодействие потенциальной и кинетической энергий.