Как создать магнитную жидкость из масла и железного порошка. Феррожидкость — что это и как сделать ферромагнитную жидкость самому Получение ферромагнитной жидкости в домашних условиях

В начале девяностых годов прошлого столетия на экраны кинотеатров вышел фильм «Терминатор-2». Все зрители были поражены способностью киборга-убийцы из вязкого металла, которого сыграл Роберт Патрик, принимать разнообразные обличья.

Тогда, восторгаясь профессионально сделанной компьютерной анимацией, мы не задумывались над тем, что эффект фантастических превращений киборга-убийцы можно смоделировать и в реальных условиях.

Ферромагнитная жидкость - это тот материал, который позволяет увидеть движущиеся скульптурные композиции. К классическому могут притягиваться или отталкиваться все вещества. Но реакция большинства из них такая слабая, что ее можно обнаружить только специальными приборами. Было бы здорово, если бы можно было увеличить материалов без разрушения их структуры и кардинального изменения их исходных свойств.

Все поменялось, когда в решение этого вопроса вмешались химики и сотворили ферромагнитные жидкости, имеющие хорошую текучесть. Они сумели получить мельчайшие магнитные частички, которые вводились в жидкости, и при воздействии на них магнитного поля не сбивались в комок и не оседали, а делали жидкость «твердой».

Ферромагнитная жидкость - это коллоидная дисперсия с очень маленькими частицами, стабилизированными в водной или углеводородной среде, при поддержке поверхностно-активных субстанций. Подобные жидкости обладают устойчивостью в течение нескольких лет и имеют при этом хорошую текучесть в сочетании со свойствами магнетизма.

Ферромагнитная жидкость может быть получена многими способами. Процесс довольно прост и складывается из двух стадий. Вначале необходимо получить магнитные частицы с размерами, близкими к коллоидным. А уже далее - стабилизировать их в жидкой основе.

Очень актуальной для исследователей остается тема возможности практического применения таких жидкостей. В последние годы они работают над очисткой сточной воды такими жидкостями от нефтепродуктов. Принцип этого процесса - омагничивание нефтепродуктов путем введения магнитных жидкостей в сточную воду. А далее омагниченные нефтепродукты отделяются особыми системами.

Ферромагнитная жидкость найдет свое применение и в медицине. Например, противоопухолевые медикаменты вредят здоровым клеткам. Но если смешать медикаменты с такой жидкостью и ввести больному в кровь, а у опухоли поставить магнит, то смесь сосредоточится в нужном месте и не повредит весь организм.

А вот еще пример. Компании, выпускающие в их амортизаторы наливают ферромагнитные жидкости. Подведенный к ним электромагнит мгновенно делает жидкость вязкой или текучей. Таким образом, регулируется подвеска автомобиля.

Есть у таких жидкостей и любопытные свойства. Если пропустить звуковую волну через намагниченную жидкость, то в расположенной рядом, возникает электрическая движущая сила. И еще. Если в раствор для мыльных пузырей добавить магнитную жидкость, то получится завораживающее представление.

Тонеры, которые содержатся в картриджах принтеров, обладают интересными магнитными свойствами, и вы можете на досуге поэкспериментировать с ними. Эффект от них получается очень интересным, потому как жидкость начинает тянуться за магнитом, и более того, отдельные элементы образуют причудливые геометрические формы. Правда, не все тонеры подойдут для повтора данной пошаговой инструкции. Нужны будут только тонеры темного цвета, поскольку цветные делаются без использования темных магнитных частиц.

Материалы

Чтобы сделать магнитную жидкость своими руками, вам понадобятся:

  • плотный лист бумаги;
  • защитные перчатки;
  • защитная маска;
  • пустой стеклянный стакан;
  • пластиковый стикер для помешивания;
  • масло растительное;
  • ложка;
  • широкая пластиковая емкость, например, тарелка.

Шаг 1 . Предельно аккуратно вскройте картридж, чтобы вылить из него тонер в стеклянный стакан. Всего вам понадобится около 50 мм жидкости. Чтобы проверить, имеет ли выбранная вами жидкость магнитные свойства, достаточно провести по стенке стакана магнитом. Если она активизируется, эксперимент можно продолжать.

Жидкость из тонера не опасна для здоровья, если вы ее не вдыхаете и не пьете. Именно поэтому перед данной работой вам нужно надеть защитные перчатки и маску. Так вы снизите вероятность отравления при случайном попадании жидкости на руки.

Шаг 2 . К уже полученному вами объему товара необходимо добавить две столовые ложки растительного масла. С помощью пластикового стикера основательным перемешайте полученный вами состав. Для продолжения эксперимента он обязательно должен быть однородным.

Шаг 3 . Полученную магнитную жидкость вам нужно аккуратно перелить в широкую емкость. Именно такая нужна, чтобы увидеть все, что будет происходить с полученной магнитной жидкостью.

С донной части тарелки, снаружи поднесите магнит. Обратите внимание на происходящее внутри емкости. В точке касания магнита жидкость должна собираться объемным бугорком в виде ежика. Это и есть магнитные частицы, которые производители добавляют в тонер. Они могут быть меньшего или большего размера, что опять-таки зависит от фирмы изготовителя.

Шаг 4 . С помощью данной жидкости вы можете сделать магнитный рисунок. Для этого вам необходимо часть жидкости вылить на плотную бумагу и с обратной стороны поднести магнит. Двигая им, из стороны в сторону, вы будете рисовать.

В случае если вы испачкали тонером любые предметы либо мебель, смойте все холодной водой, у вас это должно получиться без проблем. Горячую воду ни в коем случае использовать не нужно, она закрепит пигмент, и вымыть его будет невозможно.

(ПАВ), образующим защитную оболочку вокруг частиц и препятствующем их слипанию из-за Ван-дер-Ваальсовых или магнитных сил.

Несмотря на название, ферромагнитные жидкости не проявляют ферромагнитных свойств, поскольку не сохраняют остаточной намагниченности после исчезновения внешнего магнитного поля. На самом деле [ ] ферромагнитные жидкости являются парамагнетиками и их часто называют «суперпарамагнетиками» из-за высокой магнитной восприимчивости . Действительно ферромагнитные жидкости в настоящее время создать сложно. [ ]

Энциклопедичный YouTube

    1 / 4

    Ферромагнитная жидкость/Ferrofluid

    Как сделать ФЕРРОМАГНИТНУЮ ЖИДКОСТЬ ИЗ БЕНГАЛЬСКИХ ОГНЕЙ!Ферромагнитная жидкость!How make ferrofluid

    МАГНИТНАЯ ЖИДКОСТЬ СВОИМИ РУКАМИ MAGNETIC FLUID LIQUID METAL ferrofluid ИГОРЬ БЕЛЕЦКИЙ

    Как сделать МАГНИТНУЮ ЖИДКОСТЬ

    Субтитры

Описание

Ферромагнитные жидкости состоят из частиц нанометровых размеров (обычный размер 10 нм или меньше) магнетита , гематита или другого материала, содержащего железо , взвешенных в несущей жидкости. Они достаточно малы, чтобы тепловое движение распределило их равномерно по несущей жидкости, чтобы они давали вклад в реакцию жидкости в целом на магнитное поле. Аналогичным образом ионы в водных растворах парамагнитных солей (например, водный раствор сульфата меди(II) или хлорида марганца(II)) придают раствору парамагнитные свойства.

Ферромагнитные жидкости это коллоидные растворы - вещества, обладающие свойствами более чем одного состояния материи. В данном случае два состояния это твердый металл и жидкость , в которой он содержится. Эта способность изменять состояние под воздействием магнитного поля позволяет использовать ферромагнитные жидкости в качестве уплотнителей , смазки , а также может открыть другие применения в будущих наноэлектромеханических системах.

Ферромагнитные жидкости устойчивы: их твердые частицы не слипаются и не выделяются в отдельную фазу даже в очень сильном магнитном поле. Тем не менее, ПАВ в составе жидкости имеют свойство распадаться со временем (примерно несколько лет), и в конце концов частицы слипнутся, выделятся из жидкости и перестанут влиять на реакцию жидкости на магнитное поле. Также ферромагнитные жидкости теряют свои магнитные свойства при своей температуре Кюри , которая для них зависит от конкретного материала ферромагнитных частиц, ПАВ и несущей жидкости.

Термин «магнитореологическая жидкость» относится к жидкостям, которые подобно ферромагнитным жидкостям затвердевают в присутствии магнитного поля. Разница между ферромагнитной жидкостью и магнитореологической жидкостью в размере частиц. Частицы в ферромагнитной жидкости это в основном частицы нанометровых размеров, находящиеся во взвешенном состоянии из-за броуновского движения и не оседающие в нормальных условиях. Частицы в магнитореологической жидкости в основном микрометрового размера (на 1-3 порядка больше); они слишком тяжелы, чтобы броуновское движение поддерживало их во взвешенном состоянии, и поэтому со временем оседают из-за естественной разности в плотности частиц и несущей жидкости. Как следствие, у этих двух типов жидкостей разные области применения.

Нестабильность в нормально направленном поле

Под воздействием довольно сильного вертикально направленного магнитного поля поверхность жидкости с парамагнитными свойствами самопроизвольно формирует регулярную структуру из складок. Этот эффект известен как «нестабильность в нормально направленном поле ». Формирование складок увеличивает свободную энергию поверхности и гравитационную энергию жидкости, но уменьшает энергию магнитного поля. Такая конфигурация возникает только при превышении критического значения магнитного поля, когда уменьшение его энергии превосходит вклад от увеличения свободной энергии поверхности и гравитационной энергии жидкости. У ферромагнитных жидкостей очень высокая магнитная восприимчивость , и для критического магнитного поля, чтобы возникли складки на поверхности, может быть достаточно маленького стержневого магнита.

Типичные поверхностно-активные вещества для ферромагнитных жидкостей

Чтобы обволакивать частицы в ферромагнитной жидкости используются, в частности, следующие ПАВ :

  • полиакрилат натрия

ПАВ препятствуют слипанию частиц, мешая им образовать слишком тяжелые кластеры , которые не смогут удерживаться во взвешенном состоянии за счет броуновского движения. В идеальной ферромагнитной жидкости магнитные частицы не оседают даже в очень сильном магнитном или гравитационном поле. Молекулы ПАВ имеют полярную «головку» и неполярный «хвост» (или наоборот); один из концов адсорбируется к частице, а другой прикрепляется к молекулам жидкости-носителя, образуя, соответственно, обычную или обратную мицеллу вокруг частицы. В результате пространственные эффекты препятствуют слипанию частиц. Полиакриловая, лимонная кислоты и их соли формируют на поверхности частиц двойной электрический слой в результате адсорбции полианионов, что приводит к возникновению кулоновских сил отталкивания между частицами, повышающей стабильность жидкости на водной основе.

Хотя ПАВ полезны для того, чтобы продлить время осаждения частиц в ферромагнитной жидкости, они оказываются вредны для её магнитных свойств (в особенности, для магнитного насыщения жидкости). Добавление ПАВ (или других посторонних веществ) уменьшает плотность упаковки ферромагнитных частиц в активированном состоянии жидкости, тем самым уменьшая её вязкость в этом состоянии, давая более «мягкую» активированную жидкость. И хотя для некоторых применений вязкость ферромагнитной жидкости в активированном состоянии (так сказать, её «твердость») не очень важна, для большинства коммерческих и промышленных форм применения это самое главное свойство жидкости, поэтому необходим определённый компромисс между вязкостью в активированном состоянии и скоростью осаждения частиц. Исключение составляют ПАВ на основе полиэлектролитов , позволяющие получить высококонцентрированные жидкости с малой вязкостью.

Применение

Электронные устройства

Ферромагнитные жидкости используются для создания жидких уплотнительных устройств вокруг вращающихся осей в жёстких дисках . Вращающаяся ось окружена магнитом, в зазор между магнитом и осью помещено небольшое количество ферромагнитной жидкости, которая удерживается притяжением магнита. Жидкость образует барьер, препятствующий попаданию частиц извне внутрь жёсткого диска. Согласно утверждениям инженеров Ferrotec Corporation , жидкие уплотнители на вращающихся осях в норме выдерживают давление в от 3 до 4 фунтов на квадратный дюйм (примерно от 20 до 30 кПа), но такие уплотнители не очень годятся для узлов с поступательным движением (например, поршней), так как жидкость механически вытягивается из зазора.

Ферромагнитная жидкость также используются в некоторых высокочастотных динамиках для отвода тепла от звуковой катушки. Одновременно она работает механическим демпфером , подавляя нежелательный резонанс . Ферромагнитная жидкость удерживается в зазоре вокруг звуковой катушки сильным магнитным полем, находясь одновременно в контакте с обеими магнитными поверхностями и с катушкой.

Машиностроение

Ферромагнитная жидкость способна снижать трение . Нанесенная на поверхность достаточно сильного магнита, например неодимового , она позволяет магниту скользить по гладкой поверхности с минимальным сопротивлением.

Оборонная промышленность

Авиакосмическая промышленность

Медицина

Ведется много экспериментов по использованию ферромагнитных жидкостей для удаления опухолей .

Теплопередача

Если воздействовать магнитным полем на ферромагнитную жидкость с разной восприимчивостью (например, из-за температурного градиента) возникает неоднородная магнитная объемная сила, что приводит к форме теплопередачи называемой термомагнитная конвекция. Такая форма теплопередачи может использоваться там, где не годится обычная конвекция , например, в микроустройствах или в условиях пониженной гравитации .

Уже упоминалось использование ферромагнитной жидкости для отвода тепла в динамиках. Жидкость занимает зазор вокруг звуковой катушки, удерживаясь магнитным полем. Поскольку ферромагнитные жидкости обладают парамагнитными свойствами, они подчиняются закону Кюри - Вейса , становясь менее магнитными при повышении температуры. Сильный магнит, расположенный рядом со звуковой катушкой, которая выделяет тепло, притягивает холодную жидкость сильнее, чем горячую, увлекая горячую жидкость от катушки к кулеру . Это эффективный метод охлаждения, который не требует дополнительных затрат энергии.

Генераторы

Замороженная или полимеризованная ферромагнитная жидкость, находящаяся в совокупности постоянного (подмагничивающего) и переменного магнитных полей, может служить источником упругих колебаний с частотой переменного поля, что может быть использовано для генерации ультразвука .

Горнорудная промышленность

Ферромагнитная жидкость может быть использована в составе магнитножидкостного сепаратора для очистки от

Человеку, далекому от научных открытий, попрощавшемуся с физикой или химией еще в школе, многие вещи кажутся необычными. Пользуясь в повседневности, например, электроприборами, мы не задумываемся о том, как именно они работают, воспринимая блага цивилизации, как должное. Но когда речь заходит о чем-то, выходящем за рамки бытового восприятия, даже взрослые люди изумляются, словно дети, и начинают верить в чудеса.

Чем, кроме магии, можно объяснить явление возникновения из, казалось бы, обычной жидкости объемных фигур, цветов и пирамид, волшебных картин, сменяющих друг друга? А ведь не волшебство, наука дает обоснование происходящему.

Что такое феррожидкость?

Речь идет о феррожидкости – коллоидной системе, состоящей из воды или другого органического растворителя, содержащего мельчайшие частицы магнетита, и любого материала, который содержит железо. Их размеры настолько малы, что даже трудно представить: они в десятки раз тоньше человеческого волоса! Такие микроскопические показатели величины позволяют им равномерно распределяться в растворителе с помощью теплового движения.

До поры, пока нет внешнего воздействия, жидкость спокойна, напоминая собою зеркало. Но стоит только поднести к этому «зеркалу» направленное магнитное поле, как оно оживает, являя зрителю удивительные объемные картины: расцветают волшебные цветы, вырастают на поверхности движущиеся фигуры, изменяющиеся под воздействием поля.

В зависимости от силы и направленности воздействия магнитного поля, картины меняются на глазах – от легкой, едва заметной ряби, появляющейся на поверхности жидкости, через иглы и пики, меняющие остроту и наклон и перерастающие в цветы и деревья.

Возможность создавать цветные картины с помощью подсветки, поистине завораживающие наблюдателя, раскрывают перед ним неизведанный мир.

К сожалению, частицы металла, хоть и названы ферромагнитными, в полном смысле таковыми не являются, так как не могут сохранять получившуюся форму после исчезновения магнитного поля. Поскольку они не обладают собственной намагниченностью. В связи с этим и использование данного открытия, являющегося, к слову, не совсем новым – его совершил американец Розенцвейг еще в середине прошлого века, не нашло широкого применения.

Как сделать и где применяется ферромагнитная жидкость?

Феррожидкости применяются в электронике, в автомобильной промышленности, и хочется верить, что их повсеместное применение не за горами, и с развитием нанотехнологий они будут достаточно широко использоваться. Пока же это большей частью забава для восхищенной публики, избалованной различными видами зрелищ.

Объемные картины заставляют следить за ними, затаив дыхание, сомневаться, не монтаж ли это, и искать объяснение происходящему, хотя бы в интернете. Как знать, быть может маленький мальчик, который сегодня следит за металлическими «живыми» цветами и фигурами, разинув рот, завтра найдет этому явлению принципиально новое применение, произведя революцию в науке и технике. Но это – завтра, а пока – смотрите и наслаждайтесь!

Феррофлюид , он же магнитная жидкость — на редкость загадочная и любопытная штуковина. Впервые я его увидел лет десять тому назад, в парижском Музее науки и техники, где в качестве одного из экспонатов была представлена наглухо закрытая стеклянная посудина с маслянистой чёрной жижей внутри. Рядом лежала пара магнитов. При поднесении их в посудине жидкость реагировала, вставая эдаким ежом и образуя повторяющую форму магнита картину довольно угрожающего вида шипов. Там же было кратенькое описание, что это такое и чем его закусывают. Тогда я и узнал это название — феррофлюид. Разумеется, страстно возжелал, но тогда совершенно не было ни идей где его взять, ни возможностей для этого. И вот, спустя десять лет…

Феррофлюид, по сути, представляет собой взвесь наночастиц ферромагнетика (обычно магнетита), размерами около 10 нм (реже — больше), размешанных в поверхностно-активном веществе (органический растворитель типа олеиновой кислоты, или вода), которое образует вокруг наночастиц эдакую плёнку, не давая им слипаться. Под воздействием магнитного поля частицы выстраиваются по его линиям, образуя эти свои характерные иголки. В принципе, вряд ли мне удастся описать свойства феррофлюида лучше, чем в Вики , поэтому желающих узнать побольше теории отсылаю туда.

Искомую заветную баночку я отыскал на Ебее, как и многое другое. Ценник не очень обрадовал, но альтернатив практически не было (к слову, на supermagnete.de она раза в четыре дороже), поэтому пришлось заказывать. И вот, месяц спустя, баночка наконец у меня. 8 унций этой странной чёрной хрени.
Первое, что обнаружилось — она дико пачкается. Если капля феррофлюида попала на светлую одежду, это пятно не выведется НИЧЕМ. И очень, очень желательно при работе с ним надевать перчатки. Второе — она дико брызгается. Капли обнаруживались в самых непредсказуемых местах. И третье — ввиду сочетания первых двух свойств этой баночки хватит весьма ненадолго 🙁

Собственно, как выяснилось после нескольких экспериментов, для получения действительно интересных картин распределения частиц необходимо иметь мощные электромагниты и фигуры со сложной формой края (типа свёрел, шестерёнок и т.п.), причём по-хорошему электромагнит надо мотать именно на самом этом предмете. Развлечения же с постоянными магнитами любопытны, но, во-первых, мои магниты довольно слабые для получения больших картин, и, во-вторых, это развлечение минут на пять, поскольку поведение жидкости оказывается довольно однообразным.

Тем не менее пока что удалось придумать более или менее красочный вариант использования постоянных магнитов с ферромагнитной жидкостью: надо подносить магнит не снизу, а сверху (разумеется, через прослойку стекла или пластика), и тогда можно наблюдать, как из центра мисочки с феррофлюидом вырастает колонна, а стекло под магнитом начинает топорщится иглами перетекающей жидкости. Кроме того, сила гравитации, тянущая жидкость вниз, заметно увеличивает длину иголок.

Феррофлюид необычайно тяжело качественно сфотографировать. Ввиду его очень резкого глянцевого отражения света и полной черноты в любом хоть сколько-либо заметно толстом слое (кстати, в очень тонком он коричневый) заснять границы шипов оказывается затруднительно. Но в итоге я придумал что делать: снимать с выдержкой секунд пять, и за это время махать фонариком, освещая ежа из налипшего феррофлюида с разных сторон.

Кстати, феррофлюид можно попробовать сделать своими руками. Поскольку я пока не пробовал, не буду вдаваться в подробности, но когда доберусь — непременно распишу, что и как. Основная сложность заключается в необходимости центрифугирования взвеси, но можно попробовать обойтись подручными средствами, ибо центрифуги всё равно нету.

Отдельно хотелось бы упомянуть феррофлюидные скульптуры. Это то, к чему буду стремиться и что хочу в итоге от него получить. Очень завораживающее зрелище, особенно левитирующие.