Экспоненциальный рост. Что такое экспонента или как заставить чай остывать не так быстро Растет в геометрической прогрессии по экспоненте

Если прирост численности популяции пропорционален количеству особей, численность популяции будет расти экспоненциально.

Выражение «экспоненциальный рост» вошло в наш лексикон для обозначения быстрого, как правило безудержного увеличения. Оно часто используется, например, при описании стремительного роста числа городов или увеличения численности населения. Однако в математике этот термин имеет точный смысл и обозначает определенный вид роста.

Экспоненциальный рост имеет место в тех популяциях, в которых прирост численности (число рождений минус число смертей) пропорционален числу особей популяции. Для популяции человека, например, коэффициент рождаемости примерно пропорционален количеству репродуктивных пар, а коэффициент смертности примерно пропорционален количеству людей в популяции (обозначим его N ). Тогда, в разумном приближении,

прирост населения = число рождений - число смертей

(Здесь r - так называемый коэффициент пропорциональности, который позволяет нам записать выражение пропорциональности в виде уравнения.)

Пусть dN - число особей, добавившихся к популяции за время dt , тогда если в популяции в общей сложности N особей, то условия для экспоненциального роста будут удовлетворены, если

После того как в XVII веке Исаак Ньютон изобрел дифференциальное исчисление, мы знаем, как решать это уравнение для N - численности популяции в любое заданное время. (Для справки: такое уравнение называется дифференциальным.) Вот его решение:

где N 0 - число особей в популяции на начало отсчета, t - время, прошедшее с этого момента. Символ е обозначает такое специальное число, оно называется основание натурального логарифма (и приблизительно равно 2,7), и вся правая часть уравнения называется экспоненциальная функция .

Чтобы лучше понять, что такое экспоненциальный рост, представьте себе популяцию, состоящую изначально из одной бактерии. Через определенное время (через несколько часов или минут) бактерия делится надвое, тем самым удваивая размер популяции. Через следующий промежуток времени каждая из этих двух бактерий снова разделится надвое, и размер популяции вновь удвоится - теперь будет уже четыре бактерии. После десяти таких удвоений будет уже более тысячи бактерий, после двадцати - более миллиона, и так далее. Если с каждым делением популяция будет удваиваться, ее рост будет продолжаться до бесконечности.

Существует легенда (скорее всего, не соответствующая действительности), будто бы человек, который изобрел шахматы, доставил этим такое удовольствие своему султану, что тот пообещал исполнить любую его просьбу. Человек попросил, чтобы султан положил на первую клетку шахматной доски одно зерно пшеницы, на вторую - два, на третью - четыре и так далее. Султан, посчитав это требование ничтожным по сравнению с оказанной им услугой, попросил своего поданного придумать другую просьбу, но тот отказался. Естественно, к 64-му удвоению число зерен стало таким, что во всем мире не нашлось бы нужного количества пшеницы, чтобы удовлетворить эту просьбу. В той версии легенды, которая известна мне, султан в этот момент приказал отрубить голову изобретателю. Мораль, как я говорю моим студентам, такова: иногда не следует быть чересчур умным!

Пример с шахматной доской (как и с воображаемыми бактериями) показывает нам, что никакая популяция не может расти вечно. Рано или поздно она попросту исчерпает ресурсы - пространство, энергию, воду, что угодно. Поэтому популяции могут расти по экспоненциальному закону лишь некоторое время, и рано или поздно их рост должен замедлиться. Для этого нужно изменить уравнение так, чтобы при приближении численности популяции к максимально возможной (которая может поддерживаться внешней средой) скорость роста замедлялась. Назовем эту максимальную численность популяции K . Тогда видоизмененное уравнение будет выглядеть так:

dN = rN(1 - (N/K)) dt

Когда N намного меньше K , членом N/K можно пренебречь, и мы возвращаемся к первоначальному уравнению обычного экспоненциального роста. Однако когда N приближается к своему максимальному значению K , значение 1 - (N/K) стремится к нулю, соответственно стремится к нулю и прирост численности популяции. Общая численность популяции в этом случае стабилизируется и остается на уровне K . Кривая, описываемая этим уравнением, а также само уравнение, имеют несколько названий - S-кривая , логистическое уравнение , уравнение Вольтерры , уравнение Лотки-Вольтерры . (Вито Вольтерра, 1860–1940 - выдающийся итальянский математик и преподаватель; Альфред Лотка, 1880–1949 - американский математик и страховой аналитик.) Как бы она ни называлась, это - достаточно простое выражение численности популяции, резко возрастающей экспоненциально, а затем замедляющейся при приближении к некоему пределу. И она гораздо лучше отражает рост численности реальных популяций, чем обычная экспоненциальная функция.

Экспонента - это число, показывающее, сколько раз какая-то величина должна быть умножена сама на себя. Например, если экспонента равна 3, а величина 4, то выражение 4 3 означает 4 х 4x4, что составит 64. Математическое выражение у 2 означает у ху , ачисло 2 - это экспонента.

Чем экспоненциальный рост отличается от линейного? При линейном росте величина увеличивается на каждом этапе на одно и то оке, а не на кратное число. Если мой стартовый капитал составляет 1000 долларов и каждый год увеличивается на 100 долларов, то через 10 лет я его удвою и буду иметь 2000 долларов. Вот это и есть линейный рост, на одну и ту же сумму каждый год. Но если мой стартовый капитал в 1000 долларов каждый год будет увеличиваться на 10 процентов, то через десять лет у меня будет 2594 доллара. Это пример экспоненциального роста с постоянным кратным числом ежегодного увеличения 1,1. Если же я буду продолжать свой бизнес еще 10 лет, то линейный рост даст мне общую сумму 3000 долларов, в то время как экспоненциальный - 6727 долларов.

Любой рынок или бизнес, поддерживающий уровень роста 10 процентов или больше на протяжении длительного периода времени, получит гораздо больший эффект с плане создания стоимости, чем мы интуитивно оцениваем. Некоторые компании- такие как IBM или McDonald"s за период с 1950 по

1985 год или Microsoft в 1990-х годах- сумели обеспечить уровень роста, превышающий 15 процентов в год, и во много раз увеличили свои капиталы. Если вы начнете со 100 долларов и в течение 15 лет будете увеличивать капитал на 15 процентов в год, то в конце у вас будет уже 3292 доллара, то есть почти в 33 раза больше, чем в начале. Незначительное увеличение процента роста приводит к большой разнице в результатах.

К примеру, американский биржевой брокер Уильям О"Нил создал для своих одноклассников фонд и управлял им с 1961 по 1986 год. За это время первоначальные 850 долларов превратились в сумму 51 653 доллара после выплаты всех налогов*. За 25 лет средний рост составил 17,85 процента в год, что выразилось в увеличении первоначальной суммы в 61 раз. Таким образом, мы видим, что если за 25 лет 15-процентный рост увеличивает капитал в 33 раза, то добавление меньше чем 3 процентных пунктов к темпам годового прироста увеличивает результат в 61 раз.

Экспоненциальный рост меняет вещи не только количественно, но и качественно. Например, при быстром росте индустрии - Питер Дрюкер называет цифру 40 процентов за 10 лет - меняется сама ее структура, и на первый план выходят новые лидеры рынка. Быстрому росту рынков способствуют новаторство, отсутствие закономерности, новые продукты, технологии или потребители. Новаторы по определению ведут дела не так, как все. Новые способы редко уживаются с привычками, идеями, процедурами и структурами существующих фирм. Новаторы нередко получают возможность снимать пенки на протяжении нескольких лет, пока традиционные лидеры не решат пойти в контратаку, но тогда может быть уже поздно.

Главный закон роста численности
изолированной популяции

В основе любых моделей лежат некоторые предположения. Ценность модели определяется тем, насколько ее характеристики соответствуют свойствам моделируемого объекта. Одним из фундаментальных предположений, лежащим в основе всех моделей роста, является предположение о пропорциональности скорости роста численности популяции - самой этой численности, будь то популяция зайцев или популяция клеток. В основе этого предположения лежит тот общеизвестный факт, что важнейшей характеристикой живых систем является их способность к размножению.

Для многих одноклеточных организмов или клеток, входящих в состав клеточных тканей - это просто деление, то есть удвоение числа клеток через определенный интервал времени, называемый характерным временем деления. Для сложно организованных растений и животных размножение происходит по более сложному закону, но в наиболее простых и адекватных моделях предполагается, что скорость размножения популяции пропорциональна численности этой популяции.

Закон экспоненциального роста справедлив на определенной стадии роста для следующих живых систем: клеток в ткани, водорослей, бактерий в культуре, животных в популяциях. Математическое выражение, описывающее увеличение скорости изменения величины с ростом самой этой величины, называют автокаталитическим членом (авто - само, катализ - изменение скорости реакции).

Во многих популярных руководствах по экологии говорится, что экспоненциальный рост популяций возможен только в особо оптимальных условиях при отсутствии каких-либо ограничивающих факторов. Это не совсем верно, поскольку единственное необходимое и достаточное условие такого роста - это постоянство коэффициента естественного прироста, определяющего для размножающихся организмов скорость их размножения. Так, например, проводя серию наблюдений за ростом популяции каких-либо одноклеточных организмов в разных температурных условиях, нетрудно заметить, что с уменьшением температуры скорость деления клеток падает, но экспоненциальный характер роста сохраняется.

Иногда желая принизить значение экспоненциального роста популяции, авторы акцентируют внимание на его непродолжительности, на то, что он почти никогда не встречается в природе и, следовательно, может рассматриваться, по их мнению, лишь как демонстрация потенциальных возможностей популяции к росту. При этом они забывают о том, что никакая популяция так бы никогда и не появилась в природе, если бы не существовал этот важный, пусть и кратковременный, этап ее развития. Но бывают случаи, когда этот этап все длится и длится и никак не может закончиться.

Распространенное представление о том, что рост популяций в благоприятных условиях ограничивается только объемом пищевых ресурсов и конкуренцией - представляется ошибочным. Существует множество примеров, свидетельствующих о том, что все популяции: животные, растительные, бактериальные - обладают эффективными средствами, ограничивающими рост своей численности и активизирующимися задолго до того как заканчиваются пищевые ресурсы, или вступают в силу ограничения по причине конкуренции. Есть лишь редкие исключения из этого правила.

Кажутся ли удивительными в таком случае парадоксальный гиперболический рост численности человеческой популяции и следующий за ним демографический переход, ограничивающий ее численность на некотором фиксированном уровне. Рост, который никогда не зависел ни от каких ресурсов и переход, который происходит в условиях всеобщего изобилия, когда нет (в первом приближении) никаких ограничений ни в пищевых, ни в пространственных, ни в энергетических, ни в каких-либо других ресурсах. Разве удивительно, что растущее человечество как система, с помощью разнообразных появляющихся и исчезающих связей, управляет своим ростом и ведет себя подобно всем другим видам и подобно Гее Лавлока, как единый живой организм?

То, что плотность популяции влияет на ее дальнейший рост можно проверить в опытах с любыми видами организмов. Например, при содержании белых мышей в вольерах, когда люди следят за чистотой клеток и обеспечивают всех кормом, мыши, достигнув определенной численности, перестают размножаться. Если перевести их в более просторную клетку, тем самым снизив плотность популяции, они продолжат размножение вновь до определенного предела. При этом меняются характер поведения мышей и отношения их между собой. Зверьки становятся беспокойными и агрессивными, и это отрицательно влияет на процесс размножения.

Когда взаимодействие между особями изолированной популяции отсутствует, ее рост происходит по экспоненциальному закону. Этот закон был описан в книге Роберта Мальтуса «Опыт о законе народонаселения». В ней было впервые сформулировано положение о том, что численность популяции в благоприятных условиях растет по закону геометрической прогрессии. Сам русский термин «популяция» происходит от английского «population», население. Мальтус был первым, кто применил математику в экологии, если не считать итальянского математика Фибоначчи.

В своей работе Мальтус четко сформулировал необходимые идеализации, без которых была бы невозможна математическая постановка задачи: однородность и изолированность популяции, неограниченность ресурсов, постоянство коэффициентов рождаемости и смертности, отсутствие взаимодействия, способного нелинейно сказаться на приросте. Закон Мальтуса считается первым и самым важным законом экологии популяций. Законы экологии популяций, по мнению В.Л. Гинсбурга, напоминают законы физики .

«Закон Мальтуса описывает, как растут или уменьшаются популяции, когда больше ничего не происходит. Он описывает естественное состояние популяций – как они ведут себя в отсутствие каких-либо внешних факторов (Гинзбург, Коливан 2004) ».

«Гинзбург (1986) заметил, что закон Мальтуса играет такую же роль в экологии как Первый закон Ньютона в физике. До Галилея и Ньютона Аристотель утверждал, что естественным состоянием тел является покой, а движение возникает только тогда, когда к объекту приложена сила. Господин Исаак Ньютон, однако, доказал, что верно обратное: постоянное движение является естественным состоянием, а непостоянное движение и покой возникают только тогда, когда к объекту приложена сила. Его первый закон содержит концепцию инерции, которая является «стремлением тела сопротивляться изменениям своей скорости (Кребс 2001б).»

«Подобно первому закону Ньютона, закон Мальтуса говорит о том, что естественное состояние популяции – не покой (т.е. постоянная популяция), а движение (т.е. экспоненциальный рост или уменьшение); и если популяции не растут или уменьшаются экспоненциально, это происходит потому, что внешняя сила (т.е. что-то в окружающей среде) изменяет уровень рождаемости и / или смертности (Гинзбург 1986, Гинзбург, Коливан 2004). Эта внешняя сила может быть как небиотическим так и биотическим фактором как, например, «уровень межвидового заполнения и плотность всех остальных видов в сообществе, которые могли бы взаимодействовать с основными видами (Турчин 2003)».

Дадим определение закону экспоненциального роста сначала для колонии микроорганизмов, где смертность отсутствует, а затем и для произвольной популяции организмов:

Экспоненциальный, естественный (обусловленный только внутренними, эндогенными, системными причинами, т.е. никак не управляемый не «извне», не «изнутри») рост численности популяции множества однородных размножающихся организмов - это суперпозиция множества параллельных процессов деления, размножения с постоянным коэффициентом естественного прироста по закону одной и той же прогрессии на последовательности временных интервалов одинаковой продолжительности, равной характерному времени размножения, с равномерно распределенной фазой.

Размножающуюся популяцию можно представить как объединение элементарных, независимых, далее неделимых частиц, подсистем, состоящих, к примеру, из одной бактерии или пары разнополых представителей моногамной популяции. Т.е. эта частица, атом популяции, ее элементарная составляющая - «не видит», «не чувствует» других, размножается и гибнет независимо от них по закону геометрической прогрессии, одинаковому для всех.

В более сложном случае можно допустить взаимодействие такой элементарной подсистемы с другими, но лишь такое, которое оставляет неизменным коэффициент естественного прироста, вне зависимости от находящегося в системе числа «частиц».

Итак, главные условия экспоненциального роста численности популяции это:

  • Неизменность состояния среды (не обязательно строгая неизменность, вариации возможны, но лишь в тех пределах, в которых сохраняется гомеостаз организмов), в которой находится популяция, следствием чего является строгая цикличность, периодичность элементарного продуктивного процесса во времени. Для экспоненциального роста колонии микроорганизмов, к примеру, необходима неизменность концентрации питательной смеси, ее температура, физические поля, в которых находятся организмы, уровень радиации и т.д.
  • Независимость, отсутствие взаимовлияния процессов размножения элементарных составляющих популяции, рассредоточенной в пределах среды обитания, результатом чего является аддитивность естественного прироста (скорости роста численности) любых ее подсистем. Колонию микробов, например, можно разбить на любые части, в которых будет разное число таких микробов, и скорость роста численности этой колонии будет равна сумме скоростей роста всех ее частей. Это свойство вытекает из линейности дифференциального уравнения (1).

Рис 4. Главное условие экспоненциального роста популяции заключается в постоянстве коэффициента естественного прироста.

Главное условие экспоненциального роста заключается в том, что коэффициент естественного прироста популяции α , т.е. прирост ее численности за какой-то промежуток времени, отнесенный к этой численности, есть величина неизменная или «почти неизменная» в период роста (уменьшения) численности. Для популяции организмов со смертностью он равен разности между числом родившихся и числом умерших за единицу времени (Р-С), поделенную на общую численность. И число родившихся, и число умерших - случайные величины, различные по своей природе, имеющие разные математические ожидания и дисперсии и по разному меняющиеся во времени.

Коэффициент рождаемости (P/NΔt) и коэффициент смертности (C/NΔt) могут изменяться со временем в процессе роста популяции, но если при этом их разность будет оставаться неизменной - рост будет экспоненциальным. Если же это условие будет нарушено - экспоненты не получится; например, если для некоторой популяции коэффициент рождаемости - константа и не зависит от численности, а коэффициент смертности пропорционален численности, то рост будет логистическим.

Выражение «экспоненциальный рост» вошло в наш лексикон для обозначения быстрого, как правило безудержного увеличения. Оно часто используется, например, при описании стремительного роста числа городов или увеличения численности населения. Однако в математике этот термин имеет точный смысл и обозначает определенный вид роста.

Экспоненциальный рост имеет место в тех популяциях, в которых прирост численности (число рождений минус число смертей) пропорционален числу особей популяции. Для популяции человека, например, коэффициент рождаемости примерно пропорционален количеству репродуктивных пар, а коэффициент смертности примерно пропорционален количеству людей в популяции (обозначим его N ). Тогда, в разумном приближении,

прирост населения = число рождений — число смертей

(Здесь r — так называемый коэффициент пропорциональности , который позволяет нам записать выражение пропорциональности в виде уравнения.)

Пусть dN — число особей, добавившихся к популяции за время dt , тогда если в популяции в общей сложности N особей, то условия для экспоненциального роста будут удовлетворены, если

dN = rN dt

После того как в XVII веке Исаак Ньютон изобрел дифференциальное исчисление, мы знаем, как решать это уравнение для N — численности популяции в любое заданное время. (Для справки: такое уравнение называется дифференциальным .) Вот его решение:

N = N 0 e rt

где N 0 — число особей в популяции на начало отсчета, а t — время, прошедшее с этого момента. Символ е обозначает такое специальное число, оно называется основание натурального логарифма (и приблизительно равно 2,7), и вся правая часть уравнения называется экспоненциальная функция .

Чтобы лучше понять, что такое экспоненциальный рост, представьте себе популяцию, состоящую изначально из одной бактерии. Через определенное время (через несколько часов или минут) бактерия делится надвое, тем самым удваивая размер популяции. Через следующий промежуток времени каждая из этих двух бактерий снова разделится надвое, и размер популяции вновь удвоится — теперь будет уже четыре бактерии. После десяти таких удвоений будет уже более тысячи бактерий, после двадцати — более миллиона, и так далее. Если с каждым делением популяция будет удваиваться, ее рост будет продолжаться до бесконечности.

Существует легенда (скорее всего, не соответствующая действительности), будто бы человек, который изобрел шахматы, доставил этим такое удовольствие своему султану, что тот пообещал исполнить любую его просьбу. Человек попросил, чтобы султан положил на первую клетку шахматной доски одно зерно пшеницы, на вторую — два, на третью — четыре и так далее. Султан, посчитав это требование ничтожным по сравнению с оказанной им услугой, попросил своего поданного придумать другую просьбу, но тот отказался. Естественно, к 64-му удвоению число зерен стало таким, что во всем мире не нашлось бы нужного количества пшеницы, чтобы удовлетворить эту просьбу. В той версии легенды, которая известна мне, султан в этот момент приказал отрубить голову изобретателю. Мораль, как я говорю моим студентам, такова: иногда не следует быть чересчур умным!

Пример с шахматной доской (как и с воображаемыми бактериями) показывает нам, что никакая популяция не может расти вечно. Рано или поздно она попросту исчерпает ресурсы — пространство, энергию, воду, что угодно. Поэтому популяции могут расти по экспоненциальному закону лишь некоторое время, и рано или поздно их рост должен замедлиться. Для этого нужно изменить уравнение так, чтобы при приближении численности популяции к максимально возможной (которая может поддерживаться внешней средой) скорость роста замедлялась. Назовем эту максимальную численность популяции K . Тогда видоизмененное уравнение будет выглядеть так:

dN = rN (1 — (N /K )) dt

Когда N намного меньше K , членом N/K можно пренебречь, и мы возвращаемся к первоначальному уравнению обычного экспоненциального роста. Однако когда N приближается к своему максимальному значению K , значение 1 — (N /K ) стремится к нулю, соответственно стремится к нулю и прирост численности популяции. Общая численность популяции в этом случае стабилизируется и остается на уровне K . Кривая, описываемая этим уравнением, а также само уравнение, имеют несколько названий — S-кривая , логистическое уравнение , уравнение Вольтерры , уравнение Лотки—Вольтерры . (Вито Вольте рра, 1860-1940 — выдающийся итальянский математик и преподаватель; Альфред Лотка, 1880-1949 — американский математик и страховой аналитик.) Как бы она ни называлась, это — достаточно простое выражение численности популяции, резко возрастающей экспоненциально, а затем замедляющейся при приближении к некоему пределу. И она гораздо лучше отражает рост численности реальных популяций, чем обычная экспоненциальная функция.

Лабораторная работа №1.

«Динамика численности популяций».

Моделирование динамики популяции с помощью расчетной программы

Цель работы: Изучить модели динамики численности популяции с помощью расчетной программы.

К работе допущен

Работу выполнил

Работу защитил

2010 г.

1 ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Согласно определению известного русского эколога С.С.Шварца, популяция – это элементарная группировка организмов определенного вида, обладающая всеми необходимыми условиями для поддержания своей численности длительное время в постоянно изменяющихся условиях среды.

Популяции, как и любой биологической открытой системе, свойственны определенная структура, рост, развитие, устойчивость к абиотическим и биотическим факторам.

Наиболее важным показателем благополучия популяции (устойчивости), ее роли в функционировании природной экосистемы является ее численность.

Численность популяции определяется в основном двумя явлениями – рождаемостью и смертностью, а также миграцией.

Рождаемость - количество новых особей, появившихся в единицу времени в результате размножения. В процессе размножения число особей возрастает, теоретически она способна к неограниченному росту численности.

Существуют различные типы изменения численности особей в популяции в зависимости от времени (динамики популяции). В наиболее простых случаях динамика популяции может быть описана несложными математическими моделями, которые позволяют прогнозировать изменение численности особей.

  1. Экспоненциальный рост численности.

Одна из наиболее ранних моделей роста численности особей популяции была предложена Т. Мальтусом 1798 году, в широко известной работе "О принципах народонаселения". Данная модель получила название экспоненциальной зависимости роста численности (экспоненциальной кривой роста). В данной моделипредполагается неограниченное количество природных ресурсов, доступных особям популяции, и отсутствие каких-либо сдерживающих факторов для роста численности. При таких допущениях численность особей в популяции возрастает по степенной зависимости, т.е. очень быстро и неограниченно .

Если обозначить через n 0 количество особей в популяции и начальный момент времени (t 0 ), а через N t количество особей в некоторый момент времени t (t>t 0). Тогда изменение численности ∆N за интервал времени ∆t . т.е. скорость роста популяции будет равна:

(1)

В выражении (1) приведена средняя скорость роста популяции. Однако в популяционной экологии чаще используется не абсолютная средняя скорость, а скорость роста на один организм (специфическая скорость):

(2)

Данный показатель позволяет сравнивать значения изменение численности популяциях разных размеров. В этом случае численность определяется как скорость увеличения на одну особь за определенный интервал времени.

Перейдя к предельной форме записи скорости при
0 и
и введя новоеобозначение:


(3)

В выражении (3) показатель r может быть определен как мгновенная удельная скорость роста популяции . Для различных популяций одного того же вида это показатель может иметь различные значения. Наибольшее из всех возможны значений (r max) называют биотическим или репродуктивным потенциалом популяции

С учетом выражения (3) скорость роста популяции можно описать следующим выражением


(4)

Продифференцировав выражение (4) получим, что в любой момент времени при условии r onst (константа скорости роста) численность особей в популяции будет равна:
(5)

Формула (5) описывает экспоненциальную модель роста популяции, которая в графическом виде имеет форму кривой (рис.1). Экспоненциальная модель роста отвечает условиям неограниченного роста численности особей в популяции.

Рис. 1. Экспоненциальная кривая роста численностиособей в популяции

  1. Модель логистического роста

Максимальный размер популяции, который экосистема способна поддерживать неопределённо долго при неизменных природных условиях, называется ёмкостью экосистемы для данного вида.

Изменение численности популяции - это соотношение между биологическим потенциалом (прибавление особей) и сопротивлением среды (гибелью особей, смертностью). Факторы сопротивления среды ведут к увеличению смертности, и кривая численности выходит на плато или даже идет вниз, если популяционный взрыв вызвал истощение жизненно важных ресурсов экосистемы. Кривая роста численности популяции при сопротивлении среды приобретает S- образный вид (рис. 2).

Рис. 2 . Модель S-образного роста численности популяции

Таким образом, в естественных условиях неограниченный рост невозможен и рано или поздно численность популяции достигнет своего предела , который определяется ёмкостью среды (пространственной, пищевой и т.д.). Если обозначить через максимально возможное число особей в популяции некоторую величину К (ёмкость среды) и ввести поправочный показатель, учитывающий "сопротивление" среды росту численности в виде отношения:

,

то уравнение для такого случая запишется в виде:

(7)

Решение этого дифференциального уравнения будет иметь вид

(8)

где а - константа интегрирования, определяющая положение функции относительно начала координат, она может быть найдена из выражения (при условии, r = const ).

(9)

Выражение (8) описывает так называемую кривую логистического роста (рис.2). Это вторая простейшая математическая модель динамики популяции при условии верхнего предела численности и сопротивления среды росту численности. В соответствии с данной моделью численность популяции на первом этапе достаточно быстро растет, но затем скорость роста популяции замедляется и становится бесконечно малой вблизи величины К (логистическая кривая асимптотически приближается к горизонтали К).